Math, asked by anonymousstudent29, 4 months ago

If α and β are the zeroes of the polynomial x then find the value

2 − 4x + 1

of α +
1

α

Answers

Answered by RvChaudharY50
2

Given :- If α and β are the zeroes of the polynomial x² - 4x + 1 = 0 then find the value ,

  • 1/α + 1/β ?

Solution :-

comparing the given polynomial x² - 4x + 1 = 0 with ax² + bx + c = 0 , we get,

  • a = 1
  • b = (-4)
  • c = 1 .

now, we know that, for polynomial ax² + bx + c = 0,

  • sum of roots = (-b/a)
  • product of roots = (c/a) .

then, for for polynomial x² - 4x + 1 = 0 we have,

  • α + β = (-b/a) = -(-4/1) = 4
  • α * β = c/a = 1 /1 = 1 .

therefore,

→ 1/α + 1/β

taking LCM of denominator,

→ (β + α) / αβ

putting values,

→ 4 / 1

4 (Ans.)

Learn more :-

(7sqrt(3))/(sqrt(10+sqrt(3)))-(2sqrt(5))/(sqrt(6)+sqrt(5))-(3sqrt(2))/(sqrt(5)+3sqrt(2))

https://brainly.in/question/32043164

if the positive square root of (√190 +√ 80) i multiplied by (√2-1) and the

product is raised to the power of four the re...

https://brainly.in/question/26618255

Answered by MaheswariS
1

\textbf{Given:}

\mathsf{\alpha\;and\;\beta\;are\;zeroes\;of\;the\;polynomial\;x^2-4x+1}

\textbf{To find:}

\textsf{The value of}\;\mathsf{\alpha+\dfrac{1}{\alpha}}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{x^2-4x+1}

\mathsf{Sum\;of\;the\;zeroes=\dfrac{-b}{a}}

\implies\mathsf{\alpha+\beta=4}

\mathsf{Product\;of\;the\;zeroes=\dfrac{-b}{a}}

\implies\mathsf{\alpha\,\beta=1}

\implies\mathsf{\dfrac{1}{\alpha}=\beta}

\mathsf{Now,}

\mathsf{\alpha+\dfrac{1}{\alpha}}

\mathsf{=\alpha+\beta}

\mathsf{=4}

\implies\boxed{\mathsf{\alpha+\dfrac{1}{\alpha}=4}}

\textbf{Find more:}

If α and β are the zeroes of the polynomial

xsquare+ x – 1, the evaluate α + β + αβ

https://brainly.in/question/17511372

Similar questions