Math, asked by rathodsss8, 10 months ago

If α and β are the zeroes of the polynomial x2 – 3x + 1, the find a polynomial whose zeroes are 2α+3β and 3α+2β​

Answers

Answered by sakshisingh27
5

HELLO FRIENDS

============================================

\huge\boxed{\underline{\bf{ANSWER}}}

α² + β² can be written as (α + β)² - 2αβ 

p(x) = 2x² - 5x + 7 

a = 2 , b = - 5 , c = 7 

α and β are the zeros of p(x) 

we know that , 

sum of zeros = α + β 

                      = -b/a 

                      = 5/2

α² + β² can be written as (α + β)² - 2αβ 

p(x) = 2x² - 5x + 7 

a = 2 , b = - 5 , c = 7 

α and β are the zeros of p(x) 

we know that , 

sum of zeros = α + β 

                      = -b/a 

                      = 5/2 

product of zeros = c/a 

                           = 7/2

 

2α + 3β and 3α + 2β are zeros of a polynomial.

sum of zeros = 2α + 3β+ 3α + 2β 

                      = 5α + 5β 

                      = 5 [ α + β] 

                     = 5 × 5/2 

                    = 25/2 

product of zeros = (2α + 3β)(3α + 2β)

                          = 2α [ 3α + 2β] + 3β [3α + 2β] 

                         = 6α² + 4αβ + 9αβ + 6β² 

                         = 6α² + 13αβ +  6β² 

                         = 6 [ α² + β² ] + 13αβ 

                         = 6 [ (α + β)² - 2αβ ] + 13αβ 

                         = 6 [ ( 5/2)² - 2 × 7/2 ] + 13× 7/2 

                         = 6 [ 25/4 - 7 ] + 91/2 

                         = 6 [ 25/4 - 28/4 ] + 91/2 

                         = 6 [ -3/4 ] + 91/2 

                        = -18/4 + 91/2 

                        = -9/2 + 91/2 

                        = 82/2 

                        = 41

 

a quadratic polynomial is given by :-

k { x² - (sum of zeros)x + (product of zeros) } 

k {x² - 5/2x + 41} 

k = 2 

2 {x² - 25/2x + 41 ] 

2x² - 25x + 82               is the required polynomial

Follow me and thanks on my 15 answers to get inbox now

Answered by sadar2815gmailcom
0

Step-by-step explanation:

15 is the correct answer

Similar questions