Math, asked by SahilSayal8017, 7 months ago

If α and β are the zeroes of the polynomial x²+3x-2(x+7) , then the value of (α + 1)(β+1) is

Answers

Answered by Arceus02
2

Given Polynomial:

 \sf {x}^{2}  + 3x - 2(x + 7) \\ \sf \longrightarrow{x}^{2}  + 3x - 2x - 14 \\ \sf \longrightarrow{x}^{2}  + x - 14 \\ \sf \longrightarrow x^2 + x + (-14)

\\

It is now in the form of \sf ax^2 + bx + c

\\

So,

 \sf \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{ - 1}{1}  \\  \sf \longrightarrow\alpha  +  \beta  =  - 1\quad\quad\dots(1)

\\

And,

 \sf \alpha  \beta  =  \frac{c}{a}  =  \frac{ - 14}{1}  \\  \sf \longrightarrow \alpha  \beta  =  - 14\quad\quad\dots(2)

\\

To find:

\sf ( \alpha  + 1)( \beta  + 1) \\ \sf  \longrightarrow \alpha  \beta   \:  +  \alpha  +  \beta  + 1 \\ \sf \longrightarrow \alpha  \beta  + ( \alpha  +  \beta ) + 1 \\ \sf{From\:\: (1)\:\: and\:\: (2),} \\ \sf \longrightarrow - 14 + ( - 1) + 1 \\  \sf \longrightarrow - 14 - 1 + 1 \\ \longrightarrow  - 14

\\

Hence, the answer is,

\longrightarrow \underline{\underline{\sf{\green{(\alpha+1)(\beta+1) = -14}}}}

Similar questions