Math, asked by rajusukhdev777, 10 months ago

If α and β are the zeroes of the polynomial x²+3x+7,then α²+β² is equal

Answers

Answered by mandadisrishanpathvq
46

Answer:

 \alpha  +  \beta  =  - 3 \:  \:  \ \alpha  \beta  = 7 \\  { \alpha }^{2}  +   { \beta }^{2}  =  { (\alpha  +  \beta )}^{2}  - 2 \alpha  \beta  = 9 - 14  \\  =  - 5

hope it helps

Mark me as brainliest

Answered by BrainlyConqueror0901
8

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\alpha^{2}+\beta^{2}=-5}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  {x}^{2}  + 3x + 7 = 0 \\  \\  \tt:  \implies  \alpha  \: and \:  \beta  \: are \: zeroes \\  \\ \red{\underline \bold{To \: Dind :}} \\  \tt:  \implies  { \alpha }^{2}  +  { \beta }^{2}  = ?

• According to given question :

 \tt \circ \: a = 1 \:  \:  \:  \:  \:  \: b = 3 \:  \:  \:  \:  \:  \: c = 7 \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies Sum \: of \: zeroes =  \frac{ -b}{a} \\  \\ \tt:  \implies  \alpha  +  \beta  =  \frac{ - 3}{1}  -  -  -  -  - (1) \\  \\  \bold{Similarly : } \\  \tt:   \implies Product \: of \: zeroes =  \frac{c}{a}   \\  \\ \tt:   \implies  \alpha  \beta  =  \frac{7}{1}  -  -  -  -  - (2)\\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  { \alpha }^{2}  +  { \beta }^{2}  =  { (\alpha  +  \beta )}^{2}  - 2 \alpha  \beta  \\  \\ \tt:  \implies  { \alpha }^{2}  +  { \beta }^{2}  =  {3}^{2}  - 2 \times 7 \\  \\ \tt:  \implies  { \alpha }^{2}  +  { \beta }^{2}  = 9 - 14 \\  \\  \green{\tt:  \implies  { \alpha }^{2}  +  { \beta }^{2}  =  - 5}

Similar questions