Math, asked by skkskzkskskkskjsjsjj, 1 day ago

If α and β are the zeroes of the polynomial x²-4x+1 then the value of α+ 1/α is​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given quadratic polynomial is

\red{\rm :\longmapsto\: {x}^{2} - 4x + 1}

Further, given that

\rm :\longmapsto\: \alpha , \beta  \: are \: zeroes \: of \:  {x}^{2} - 4x + 1

We know,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm \implies\: \alpha  \beta  = \dfrac{1}{1}

\rm \implies\: \alpha  \beta  = 1

\rm \implies\: \beta  = \dfrac{1}{ \alpha }  -  -  - (1)

Further, we know that

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm \implies\: \alpha  +  \beta  =  -  \: \dfrac{( - 4)}{1}

\rm \implies\: \alpha  + \dfrac{1}{ \alpha }  = 4

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

 \green{\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}}

 \green{\boxed{ \bf{ \:  \alpha  \beta  +  \beta \gamma   +  \gamma  \alpha  =  \dfrac{c}{a}}}}

 \green{\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}}

Similar questions