Math, asked by Chalak05, 10 months ago

If α and β are the zeroes of the quadratic polynomial 2x2 + 3x - 5, find the value of
1/α +1/β.


plx answer fassstttttt​

Answers

Answered by TrickYwriTer
27

Step-by-step explanation:

Given -

α and β are Zeroes of polynomial 2x² + 3x - 5

To Find -

 \frac{1}{ \alpha}  +  \frac{1}{ \beta}  \:   \\

Now,

According to the question

2x² + 3x - 5

2x² - 2x + 5x - 5

2x(x - 1) + 5(x - 1)

(2x + 5)(x - 1)

Zeroes of polynomial 2x² + 3x - 5 are

2x + 5 = 0 and x - 1 = 0

 \fbox \bold{x =  \frac{ - 5}{2}  \:  \:  \: and \:  \: x = 1}

Let \:  \bold{ \alpha} = 1 \\ and \\  \bold{ \beta} =  \frac{ - 5}{2}  \\  \\ Then, \\ The \: value \: of \:  \frac{1}{ \alpha}  +  \frac{1}{ \beta} \:  is \\  \\  \frac{1}{1}  +  \frac{1}{ \frac{ - 5}{2} }  \\ =  1  -  \frac{2}{5}  \\  =  \frac{5 - 2}{5}  \\   = \frac{3}{5}  \\  \\ Hence, \\  \fbox \bold{The \: value \: of \:  \frac{1}{ \alpha}  +  \frac{1}{ \beta}  \: is \:  \frac{3}{5} }

Answered by amitkumar44481
31

AnsWer :

3/5.

Concepts Required :

 \tt  \blacksquare Sum \: of \: roots .\\  \tt \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{coefficient \: of \: x}{coefficient \: of \:  {x}^{2} }

 \tt  \blacksquare Product \: of \: roots .\\  \tt \alpha  \times  \beta  =  \frac{ c}{a}  =  \frac{constant \: term}{coefficient \: of \:  {x}^{2} }

To Find :

The value 1/α +1/β.

Solution :

We have equation,

 \tt2 {x}^{2}  + 3x - 5. \\ \tt  a = 2 \: , \: b = 3 \: ,   \: and,  \: c =  - 5.

Now,

  \begin{aligned}\frac{1}{ \alpha }  +  \frac{1}{ \beta } & =  \frac{ \alpha  +  \beta }{ \alpha . \beta }  \\ & = \frac{ - 3}{\cancel2}   \times  \frac{\cancel2}{ - 5}  \\ & =  \frac{3}{5}  \end{aligned}

Therefore,the value of 1/α +1/β is 3/5.

Similar questions