Math, asked by surendrasanodiya2016, 10 months ago

ifα and β are the zeroes of the quadratic polynomial f(x)=6x^2+x-2,find the value of α/β+β/α​

Answers

Answered by sonabrainly
5

Answer:

Step-by-step explanation:

Let’s first solve the equation to get our zeroes of the equation i.e. alpha and beta.

6x2+x−2=0

6x2+4x−3x−2=0

2x(3x+2)−(3x+2)=0

which gives us two equations,

2x−1=0=>x=1/2(alpha)

3x+2=0=>x=−2/3(beta)

So, the value of alpha/beta and beta/alpha will be -3/4 and -4/3, adding both of them gives the solution as -25/12.

Answered by BrainlyConqueror0901
3

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{-25}{12}}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{given : } \\  \implies  \alpha  \: and \:  \beta  \in( 6 {x}^{2}  + x - 2 = 0)  \\  \\  \underline \bold{to \: find: }  \\  \implies  \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha } = ?

• According to given question :

 \bold{using \: quadratic \: formula : }  \\  \implies  6{x}^{2}  + x - 2 = 0 \\  \\  \implies x =  \frac{ - b \pm  \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\  \implies  x =  \frac{ - 1 \pm \sqrt{ {1}^{2}  - 4 \times 6 \times ( - 2)} }{2 \times 6}  \\  \\  \implies x =  \frac{ - 1 \pm \sqrt{1 + 48} }{12}  \\  \\  \implies x =  \frac{ - 1 \pm \sqrt{49} }{12}  \\  \\  \implies x =  \frac{ - 1 \pm7 }{12}  \\  \\   \bold{\implies x =   \frac{1}{2}    \: and \:  \frac{ - 2}{3} } \\  \\   \bold{\implies  \alpha  =  \frac{1}{2} }    \\  \\ \bold{ \implies  \beta  =  \frac{ - 2}{3} } \\  \\  \bold{for \: finding \: value : } \\  \implies  \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }  \\  \\  \implies  \frac{ \frac{1}{2} }{ \frac{ - 2}{3} }  +  \frac{  \frac{ - 2}{3} }{ \frac{1}{2} }  \\  \\  \implies  \frac{3}{2 \times  - 2}  +  \frac{ - 2\times 2}{3}  \\  \\  \implies  \frac{ -3 }{ 4}  +  \frac{ - 4}{3}  \\  \\  \implies  \frac{ - 9  + ( - 16)}{12}  \\  \\  \implies  \frac{ -9 - 16}{12}  \\  \\   \bold{\implies  \frac{ - 25}{12}}

Similar questions