If α and β are the zeroes of the quadratic polynomial f(x)=ax2+bx+c
then evaluate,a(α²/β+β²/α)+b(α/β+β/α)
Answers
Answered by
3
Given: α and β are the zeroes of the quadratic polynomial f(x)=ax2+bx+c.
To find: Evaluate,a(α²/β+β²/α)+b(α/β+β/α)
Solution:
- As we have given the two degree polynomial, and α and β are roots of it, so:
α+β = -b/a and αβ = c/a
α+β = -b/a
- Now, using these values, we can evaluate a(α²/β+β²/α)+b(α/β+β/α)
- Lets simplify the terms, we get:
a( α³+β³)/αβ + b(α²+β²)/αβ
a ( α+β)(α²+β²-αβ)/αβ + b(α²+β² +2αβ - 2αβ)/αβ
{a{ ( -b/a)(b²-2ac)/a² - c/a} / c/a}+ {b(α+β)²- 2αβ/ αβ}
a(3abc - b³/a²c) + b{b²/a² -2c/a / c/a}
a(3abc - b³/a²c) + b{b²-2ca/ac }
(3abc - b³/ac) + (b³-2abc/ac)
(3abc -2abc -b³ +b³)/ac
abc/ac
b
Answer:
So, the final answer of a(α²/β+β²/α)+b(α/β+β/α) is b.
Similar questions