Math, asked by nandy1010101, 6 months ago

If α and β are the zeroes of the quadratic polynomial f(x)= ax2+bx+c, then α-β=​

Answers

Answered by Anonymous
2

Answer:

If α and β are roots / zero of the quadratic equation

f(x)=ax

2

+bx

2

+c

aα+b

β

+

aβ+b

α

=

(aα+b)(aβ+b)

β(aβ+b)+α(aα+b)

=

a

2

αβ+abαabβ+b

2

2

+bβ+aα

2

+bα

=

a

2

(αβ)+ab(α+β)+b

2

a(α

2

2

)+b(α+β)

observe, we have

α+β=

a

−b

αβ=

a

c

⇒ α

2

2

=(α+β)

2

−2αβ

=

a

2

b

2

a

2c

Using equations on the right

=

a

2

(

a

c

)+ab(

a

−b

)+b

2

a(

a

2

b

2

a

2c

)+b(

a

−b

)

=

ac−b

2

+b

2

a

b

2

−2c−

a

b

2

=

ac

−2c

=

a

−2

Answered by SonalRamteke
8

</p><p></p><p>ANSWER</p><p></p><p>If α and β are roots / zero of the quadratic equation </p><p></p><p>f(x)=ax2+bx2+c</p><p></p><p></p><p>aα+bβ+aβ+bα</p><p></p><p>=(aα+b)(aβ+b)β(aβ+b)+α(aα+b)</p><p></p><p>=a2αβ+abαabβ+b2aβ2+bβ+aα2+bα</p><p></p><p>=a2(αβ)+ab(α+β)+b2a(α2+β2)+b(α+β)</p><p></p><p></p><p>observe, we have</p><p></p><p>α+β=a−b</p><p></p><p>αβ=ac</p><p></p><p>⇒ α2+β2=(α+β)2−2αβ</p><p></p><p>=a2b2−a2c</p><p></p><p></p><p>Using equations on the right</p><p></p><p></p><p>=a2(ac)+ab(a−b)+b2a(a2b2−a2c)+b(a−b)</p><p></p><p></p><p>=ac−b2+b2ab2−2c−ab2</p><p></p><p></p><p>=ac−2c=a−2</p><p></p><p>

this is your answer dear have a good day dear

Similar questions