Math, asked by Anonymous, 1 year ago

If α and β are the zeroes of the quadratic polynomial f(x) = x² -2x + 3 , find a polynomial whose roots are :-


 \frac{ \alpha - 1}{ \alpha + 1}  ,   \frac{ \beta  - 1}{ \beta  + 1 }

Answers

Answered by iamlall
1
x^{2} -2x +3 =0 =\ \textgreater \ (x-3)(x-1) =0 =\ \textgreater \ x= 3, 1 =>\alpha =3 ,,, \beta =1 

S= \frac{ \alpha -1}{ \alpha +1}+ \frac{ \beta -1}{ \beta +1} = 1/2 

P= 0

 x^{2} -Sx+P=0

iamlall: [tex] x^{2} -2x +3 =0 =\ \textgreater \ (x-3)(x-1) =0 =\ \textgreater \ x= 3, 1 [/tex]
let [tex] \alpha =3 ,,, \beta =1 [/tex]\
iamlall: x^{2} -2x +3 =0
iamlall: (x-3)(x-1) =0
iamlall: x= 3, 1
iamlall: alpha= 3
iamlall: beta=1
iamlall: x^2-Sx+P=0
iamlall: S= sum of next roots P=product of roots
Similar questions