If α and β are the zeroes of the quadratic polynomial f(x) = x2 – p(x + 1) – c, show that (α + 1)(β + 1) = 1 – c.
Answers
Answered by
9
Solution:
Since, α and β are the zeroes of the quadratic polynomial
f(x) = x2 – p(x + 1)– c
Now,
Sum of the zeroes = α + β = p
Product of the zeroes = α × β = (- p – c)
So,
(α + 1)(β + 1)
= αβ + α + β + 1
= αβ + (α + β) + 1
= (− p – c) + p + 1
= 1 – c = RHS
So, LHS = RHS
Hence, proved.
Aditya4147:
hiii
Answered by
3
Answer:-
Given that alpha and beta are the roots of the quadratic equation f(x) = x^2-p(x+1)-c = x^2-px-p-c = x^2 -px-(p+c),
comparing with ax^2 + bx + c, we have, a =1 , b= -p & c= -(p+c)
alpha+beta = -b/a = -(-p)/1 = p
& alpha*beta = c/a = -(p+c)/1 = -(p+c)
Therefore, (Alpha + 1)*(beta+1)
= Alpha*beta + alpha + beta + 1
= -(p+c) + p + 1
= -p-c+p+1
= 1-c
Hope it helps
Similar questions