Math, asked by gopmurloki24, 2 months ago

If α and β are the zeroes of the quadratic polynomial x2 –5x + 6, find the value of α4β2 + α2β4.​

Answers

Answered by amansharma264
23

EXPLANATION.

α and β are the zeroes of the quadratic polynomial.

⇒ f(x) = x² - 5x + 6.

As we know that,

Sum of the zeroes of the quadratic equation.

⇒ α + β = -b/a.

⇒ α + β = -(-5)/1 = 5.

Products of the zeroes of the quadratic equation.

⇒ αβ = c/a.

⇒ αβ = 6/1 = 6.

To find :

⇒ α⁴β² + a²β⁴.

⇒ α⁴β² + a²β⁴ = α²β²[a² + β²].

As we know that,

Formula of :

⇒ x² + y² = (x + y)² - 2xy.

Using this formula in equation, we get.

⇒ α⁴β² + a²β⁴ = (αβ)²[(α + β)² - 2αβ].

⇒ α⁴β² + a²β⁴ = (6)²[(5)² - 2(6)].

⇒ α⁴β² + a²β⁴ = 36[25 - 12].

⇒ α⁴β² + a²β⁴ = 36[13].

⇒ α⁴β² + a²β⁴ = 468.

                                                                                                                         

MORE INFORMATION.

Nature of the roots of the quadratic expression.

(1) = Real and unequal, if b² - 4ac > 0.

(2) = Rational and equal, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal Or complex conjugate.

Similar questions