Math, asked by kr8822670, 1 month ago

If α and β are the zeroes of the Quadratic Polynomials p(x) = 4x2 - 5x – 1. Find the value of α2β + αβ2
i) 5/16 ii) 3/16 iii) -5/16 iv) none

Answers

Answered by DeeznutzUwU
0

        \text{\huge \bf \underline{Answer:}}

        \text{It is given that }\alpha \text{ and }\beta \text{ are roots of the polynomial}\\p(x) = 4x^{2} - 5x - 1

        \text{We have to find the value of }\alpha^{2}\beta + \alpha\beta^{2}

        \text{Taking }\alpha\beta \text{ common}

\implies\: \alpha\beta(\alpha + \beta)

        \text{Applying the relationship between roots and coefficients}

\implies\: \text{Sum of roots} \longrightarrow \alpha + \beta = \dfrac{-b}{a} \longrightarrow \alpha + \beta = \dfrac{-(-5)}{4} \longrightarrow \alpha + \beta = \dfrac{5}{4}

\implies \:\text{Product of roots} \longrightarrow \alpha\beta = \dfrac{c}{a} \longrightarrow \alpha\beta = \dfrac{-1}{4} \longrightarrow \alpha\beta =- \dfrac14

        \text{Now, substituting the values in the expression}

\implies \:\alpha\beta(\alpha + \beta) = -\dfrac14\text{\huge{(}}\dfrac54\text{\huge{)}}

\implies\: \alpha\beta(\alpha + \beta) = -\dfrac{5}{16}

\implies \:\boxed{\boxed{\alpha^{2}\beta + \alpha\beta^{2}   = -\dfrac{5}{16}}}

Similar questions