Math, asked by swati54774, 1 month ago

If α and β are the zeroes of x²-4x+1, then α² +β² - 9αβ​

Answers

Answered by TrustedAnswerer19
6

{\blue{ \boxed{ \boxed{ \begin{array}{cc} \to \bf \: given \:  : \\  \\  \rm \:  \alpha  \:  \: and \:  \beta  \:  \: are \: the \: zeroes   \: of \: the \: quadratic \\  \rm \: polynomial   \:  \:  \:  \:  {x}^{2} - 4x + 1  \\  \\  \\   \red{ \underline{\sf \: we \: have \: to \: find \: the \: value \: of :}} \\  \\ \sf \hookrightarrow \:   { \alpha }^{2}   +  { \beta }^{2} - 9 \alpha  \beta  \end{array}}}}}

 \small{{\pink{ \boxed{ \boxed{ \begin{array}{cc}   \green{ \underline{ \sf \: we \: know \: that : }}  \\  \\ \rm \:  if \:  \: a {x}^{2} + bx + c \:  \: is \: a \: quadratic  \\ \rm polynomial \:  \rm \: and \:  \alpha  \: , \:   \beta  \: are \: the \: zeroes  \\  \rm \: then \\  \\    \small{\boxed{\sf \: sum \: of \: zeroes \:, ( \alpha  +  \beta ) =  -  \frac{coefficient \: of \: x}{coefficient \: of \:  {x}^{2} } =  -  \frac{b}{a} } } \\  \\  \\   \small{ \boxed{\sf \: product \: of \: zeroes, \:  \alpha  \beta  =  \frac{constant \: term}{coefficient \: of \:  {x}^{2} } =  \frac{c}{a}}}  \\  \\  \end{array}}}}}}

According to the question,

a = 1

b = -4

c = 1

Now,

{\orange{ \boxed{ \boxed{ \begin{array}{cc}   \sf \: sum \: of \: zeroes  , \:  \alpha  +  \beta  =  -  \frac{ - 4}{1}   = 4 \\  \\  \sf \: product \: of \: zeroes, \:  \alpha  \beta  =  \frac{1}{1} = 1 \end{array}}}}}

Again,

{\orange{ \boxed{ \boxed{ \begin{array}{cc}   \bf \: we \: know \: that \:  \\  {x}^{2}  +  {y}^{2}  =  {(x + y)}^{2} - 2xy  \end{array}}}}}

So,

{\orange{ \boxed{ \boxed{ \begin{array}{cc}   \sf \:  { \alpha }^{2}  +  { \beta }^{2} =  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta  \\  \\  =  {4}^{2}   - 2 \times 1 \\  \\  = 16 - 2 \\  \\  = 14 \end{array}}}}}

Now evaluating,

{\orange{ \boxed{ \boxed{ \begin{array}{cc}  \sf \:  { \alpha }^{2}  +  { \beta }^{2} - 9 \alpha  \beta  \\  \\  = 14 - 9 \times 1 \\  \\  = 14 - 9 \\  \\  = 5   \end{array}}}}}

So,

 { \alpha }^{2}  +  { \beta }^{2} - 9 \alpha  \beta   = 5

Similar questions