If α and β are the zeros o the quadratic polynomial f(x)= x2-px+q, then find the values of : α^2 +β^2 (ii) 1/α+1/β
Answers
Answered by
8
α^2 +β^2
=(alpha+bita)²-2(alpha. bita)
=p²-2q
..&
2
(alpha+bita)/(alpha.bita)
=p/q
=(alpha+bita)²-2(alpha. bita)
=p²-2q
..&
2
(alpha+bita)/(alpha.bita)
=p/q
Tamash:
mark as brainlisted please....
Answered by
2
Solution:
We have,
f(x) = x2 + px + q
Sum of the zeroes = α + β = -p
Product of the zeroes = αβ = q
From the question,
Sum of the zeroes of new polynomial = (α + β)2 + (α – β)2
= (α + β)2 + α2 + β2 – 2αβ
= (α + β)2 + (α + β)2 – 2αβ – 2αβ
= (- p)2 + (- p)2 – 2 × q – 2 × q
= p2 + p2 – 4q
= p2 – 4q
Product of the zeroes of new polynomial = (α + β)2 (α – β)2
= (- p)2((- p)2 - 4q)
= p2 (p2–4q)
So, the quadratic polynomial is,
x2 – (sum of the zeroes)x + (product of the zeroes)
= x2 – (2p2 – 4q)x + p2(p2 – 4q)
Hence, the required quadratic polynomial is f(x) = k(x2 – (2p2 –4q) x + p2(p2 - 4q)).
Similar questions
English,
7 months ago
Political Science,
7 months ago
Math,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago