Math, asked by rohitramesh1982, 9 months ago

If α and β are the zeros of 5x^2-x-2, Find a polynomial whose zeros are 3α^2 β and 3β^2α

Answers

Answered by BrainlyConqueror0901
32

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{125x^{2}+30x-72=0}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given:}} \\  \tt:  \implies  5{x}^{2}  -x - 2 = 0 \\  \\  \tt:  \implies  \alpha  \: and \:  \beta  \: are \: zeroes \\  \\ \red{ \underline \bold{To \: Find:}} \\  \tt:  \implies  Polynomial\:whose\:zeroes\:are\:3\alpha^{2}\beta\:and\:3\beta^{2}\alpha = ?

• According to given question :

 \tt  \circ \:  {5x}^{2}  - x - 2 = 0 \\  \\  \tt \circ \:  \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{1}{5}  \\  \\   \tt \circ \:  \alpha  \beta  =  \frac{c}{a}  =  \frac{ - 2}{5}  \\  \\ \bold{For \: sum \: of \: zeroes} \\   \tt: \implies  {3 \alpha }^{2} \beta   + 3 { \beta }^{2}  \alpha  \\  \\ \tt: \implies 3 \alpha  \beta ( \alpha  +  \beta ) \\  \\ \tt: \implies 3 \times  \frac{ - 2}{5}  \times  \frac{1}{5}  \\  \\ \tt: \implies  \frac{ - 6}{25}  \\  \\  \bold{For \: product \: of \: zeroes} \\ \tt: \implies  {3 \alpha }^{2} \beta  + 3 { \beta }^{2}   \alpha  \\  \\ \tt: \implies 9  {( \alpha  \beta )}^{3} \\  \\ \tt: \implies 9 \times  (\frac{ - 2}{5} )^{3} \\  \\  \tt: \implies 9 \times  \frac{ - 8}{125}  \\  \\  \green{\tt: \implies  \frac{ - 72}{125} } \\  \\  \bold{For \: Quadratic\:eqn: } \\ \tt: \implies  {x}^{2}  - (sum \: of \: zeroes)x + (product \: of \: zeroes) = 0 \\  \\ \tt: \implies  {x}^{2}  - ( \frac{ - 6}{25} )x + ( \frac{ - 72}{125} ) = 0 \\  \\  \green{\tt: \implies 125 {x}^{2}  + 30x - 72 = 0}

Answered by Saby123
58

</p><p>\tt{\huge{\pink{Hello!!! }}}

 \tt{ \purple{f(x_{1}) = 5 {x}^{2}  - x - 2}}

 \tt{ \blue{ \implies{ \alpha  +  \beta  =  \dfrac{ - b}{a} =  \dfrac{1}{5}  }}} \\  \\

\tt{ \green{ \implies{ \alpha  \beta  =  \dfrac{c}{a} =  \dfrac{ - 2}{5}  }}}

New Zeroes are :

3 { \alpha }^{2}  \beta  \: and \: 3 { \beta }^{2}  \alpha

 \tt{ \red{ \implies{sum \: of \: zeroes = 3 \alpha  \beta ( \alpha  +  \beta ) =  \frac{ - 6}{25} }}}

 \tt{ \pink{ \implies{product \: of \: zeroes \:  =  \dfrac{-72}{625} }}}

</p><p>\tt{\green{f(x_{2}) = {x}^2 \:- \:(Sum\:Of\: Zeroes)\: +\: (Product\:Of\: Zeroes) }}}

Hence the required Quadratic Equation becomes :

</p><p>\tt{\blue{\implies{125 {x}^2 \: + \: 30 x \: - \: 72 \: = \: 0 }}}

Similar questions