Math, asked by iamvastavverma, 2 months ago

If α and β are the zeros of polynomial x² - 7x + 10, then α² + β² =​

Answers

Answered by Sauron
21

Answer:

The value of α² + β² is 29

Step-by-step explanation:

Given polynomial = x² – 7x + 10

Zeros of the polynomial are α and β

According to the relationship between zeros and coefficients,

  • a = 1
  • b = (–7)
  • c = 10

\sf{\longrightarrow} \:  \alpha  +  \beta  =  \dfrac{ - b}{a}

\sf{\longrightarrow} \:  \alpha  +  \beta  =  \dfrac{ - ( - 7)}{1}

\sf{\longrightarrow} \:  \alpha  +  \beta  =  7

________________________

\sf{\longrightarrow} \:  \alpha   \beta  =  \dfrac{c}{a}

\sf{\longrightarrow} \:  \alpha   \beta  =  \dfrac{10}{1}

\sf{\longrightarrow} \:  \alpha  \beta  =  10

________________________

Value of α² + β²,

\sf{\longrightarrow} \:  { \alpha }^{2}  +  { \beta }^{2}

\sf{\longrightarrow} \: ( { \alpha  +  \beta )}^{2}  - 2 \alpha  \beta

\sf{\longrightarrow} \: (7)^{2}  - 2(10)

\sf{\longrightarrow} \:49 - 20

\sf{\longrightarrow} \:29

α² + β² = 29

Therefore, the value of α² + β² is 29

Answered by NewGeneEinstein
2

Step-by-step explanation:

Given :-

\\ \tt{:}\Rrightarrow \alpha \:and\:\beta\:are\:zeros\:of\:polynomial \:x^2-7x+10=0

To find:-

\\ \tt{:}\Rrightarrow \alpha^2+\beta^2

Solution:-

here

  • a=1
  • b=-7
  • c=10

\boxed{\sf \alpha+\beta=\dfrac{-b}{a}}

\\ \tt{:}\Rrightarrow \dfrac{-(-7)}{1}

\\ \tt{:}\Rrightarrow \dfrac{7}{1}

\\ \tt{:}\Rrightarrow 7

and,

\boxed{\sf \alpha\beta=\dfrac{c}{a}}

\\ \tt{:}\Rrightarrow \dfrac{10}{1}

\\ \tt{:}\Rrightarrow 10

Now,

\boxed{\sf (\alpha+\beta)^2=\alpha^2+\beta^2+2\alpha\beta}

\\ \tt{:}\Rrightarrow (7)^2=\alpha^2+\beta^2+2(10)

\\ \tt{:}\Rrightarrow -(\alpha^2+\beta^2)=20-49

\\ \tt{:}\Rrightarrow -(\alpha^2+\beta^2)=-29

\\ \tt{:}\Rrightarrow \underline{\boxed{\boldsymbol{\alpha}^2+\boldsymbol{\beta}^2=29}}

Similar questions