Math, asked by KrishangT, 1 month ago

If α and β are the zeros of quadratic polynomial x2 - 4x - 5, find the value of 1/α3 + 1/β3.

Answers

Answered by Anonymous
6

Given,

α and β are the zeros of quadratic polynomial x² - 4x - 5.

To find,

the value of \sf{\frac{1}{  { \alpha }^{3}}  +  \frac{1}{ { \beta }^{3} }}

Solution,

In the given quadratic polynomial,

a = 1, b = - 4 and c = -5

We know that,

α + β = \sf{\frac{ - b}{a}} and

αβ = \sf{\frac{c}{a}}

So,

α + β = \sf{\frac{-(-4)}{1}=\frac{4}{1}={\boxed{4}}}

αβ = \sf{\frac{-5}{1}={\boxed{-5}}}

Then,

=> \sf{\frac{1}{ { \alpha }^{3} }  +  \frac{1}{ { \beta }^{3} } }

=> \sf{ \frac{ { \alpha }^{3} +  { \beta }^{3}  }{( \alpha  \beta) ^{3} } }

=> \sf{ \frac{( \alpha  +  \beta ) ^{3} - 3 \alpha  \beta( \alpha  +  \beta ) }{( \alpha  \beta )^{3} } }

Now putting the values of α + β = 4 and αβ = -5 in \bf{ \frac{( \alpha  +  \beta ) ^{3} - 3 \alpha  \beta( \alpha  +  \beta ) }{( \alpha  \beta )^{3} },}

=> \sf{ \frac{( 4 ) ^{3} - 3 (-5)( 4 ) }{( -5 )^{3} } }

=> \sf{ \frac{64- (-60) }{-125 } }

=> \sf{ \frac{64+60 }{-125 } }

=> {\boxed{\bf{ \frac{124}{-125 }}}}

\large{\therefore\bf{\frac{1}{  { \alpha }^{3}}  +  \frac{1}{ { \beta }^{3} }= \frac{124}{-125 }}}

Identity used:-

=> (a+b)³ = a³+b³+3ab(a+b)

More to know:-

https://brainly.in/question/44421637

Similar questions