Math, asked by assur999, 11 months ago

if α and β are the zeros of the polynomial 2x²-7x+3, Find the sum of the
reciprocal of its zeros.

Answers

Answered by Anonymous
84

Given \:  \: Question \:  \: Is \:  \\ p(x) = 2x {}^{2}   - 7x + 3  \:  \:  \: is \: a \: polynomial \: \\ with \:  \: \alpha  \:  \:  \:  \: and \:  \:  \:  \beta  \:  \:  \: are \:  \: its \:  \: two \:  \: zeros \\  \\ find \:  \:  \:  \:  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  \\  \\ Answer \:  \\  \\ p(x) = 2 x{}^{2}  - 7x + 3 \\  \\  \alpha  +  \beta  =  \frac{7}{2}  \:  \:  \:  \: and \:  \:  \:  \:  \alpha  \beta  =  \frac{3}{2}  \\  \\  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{( \alpha  +  \beta )}{ \alpha  \beta }  \\  \\  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{( \frac{7}{2}) }{ (\frac{3}{2}) }  \\  \\  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{7}{3}  \\  \\ therefore \:  \: sum \:  \: of \:  \: reciprocal \:  \: of \:  \: its \:  \: zeros \:  \: are \\  \\  \frac{7}{3}  \\  \\ Note \:  \: if \:  \:  \: p(x) = ax {}^{2}   + bx + c\:  \: \\  \\ then \:  \:  \:  \alpha  +  \beta  =  \frac{ - b}{a}   \:  \:  \:  \: and \:  \:  \:  \:  \:  \alpha  \beta  =  \frac{c}{a}  \\ where \:  \:  \alpha  \:  \:  \: and \:  \:  \:  \beta  \:  \: are \:  \: its \:  \: zeros

Answered by BendingReality
108

Answer:

7 / 3

Step-by-step explanation:

Given :

p ( x ) = 2 x² - 7 x + 3

Sum of zeroes α + β = - b / a

= > -  ( - 7 ) / 2

= > 7 / 2 ... ( i )

Product of zeroes  α β = c / a

= > 3 / 2  ... ( ii )

Now sum of the reciprocal of zeroes :

= > 1 / α + 1 / β

= > ( α + β ) / ( α β )

Putting values from ( i ) and  ( ii ) we get :

= > ( 7 / 2 ) / ( 3 / 2 )

= > 7 / 3

Therefore , sum of the reciprocal of zeroes is 7 / 3 .

Attachments:
Similar questions