Math, asked by soharabaliali965, 10 months ago

If α and β are the zeros of the polynomial f(x)=x^2+x-2,find the value of (1/α-1/β).

Answers

Answered by Anonymous
100

\large{\underline{\underline{\mathfrak{\green{\sf{Solution:-}}}}}}.

  • \boxed{\red{\:(\frac{3}{2})}}

\large{\underline{\underline{\mathfrak{\green{\sf{Given\:Here:-}}}}}}.

  • \:f(x)\:=\:x^2+x-2

  • \alpha\: and \: \beta\:are\:Roots

\large{\underline{\underline{\mathfrak{\green{\sf{Find\:Here:-}}}}}}.

  • \:Value\:of\:\frac{1}{\alpha}\:-\frac{1}{\beta}

\large{\underline{\underline{\mathfrak{\green{\sf{Explanation:-}}}}}}.

We know that ,

\large\red{\boxed{\:Sum\:Of\:Root\:=\frac{-(cofficient\:of\:x)}{(cofficient\:of\:x^2)}}}

\implies\:(\alpha\:+\beta)\:=\frac{-(1)}{1}

\implies\:(\alpha\:+\beta)\:=\:-1.........(1)

Again,

\large\red{\boxed{\:Product\:of\:Roots\:=\frac{Constant\:part}{Cofficient\:of\:x^2}}}

\implies\:(\alpha\beta)\:=\frac{-2}{1}

\implies\:(\alpha\beta)\:=\:-2.........(2)

We Known,

  • \large\red{\boxed{\:(x-y)\:=\sqrt{(x+y)^2-4xy}}}

So,

\implies\:(\alpha\:-\beta)\:=\sqrt{(\alpha+\beta)^2-4\alpha\beta}

Keep value by (1) and (2)

\implies\:(\alpha\:-\beta)\:=\sqrt{(-1)^2-4(-2)}

\implies\:(\alpha\:-\beta)\:=\sqrt{(1+8)}

\implies\:(\alpha\:-\beta)\:=\sqrt{9}

\implies\boxed{\:(\alpha\:-\beta)\:=\:3}.....(3)

We Find Here:-

\large\red{\boxed{\frac{1}{\alpha}\:-\frac{1}{\beta}}}

\implies\:(\frac{\beta\:-\alpha}{\alpha\beta}

keep value by (2) and (3) ,

\implies\:\frac{-(3)}{-2}

\implies\boxed{\:\frac{3}{2}}

___________________

Similar questions