Math, asked by ved08, 9 months ago

If α and β are the zeros of the polynomial f (x) = x² - 5x + k such that α - β = 1, find the value of k.
a) 5
b) 6
c) 7
d) 8

Answers

Answered by saounksh
2

ᴀɴsᴡᴇʀ

  • \star \star \large{\boxed{ (b) k = 6 }} \star \star

ɢɪᴠᴇɴ

  •  \alpha, \beta are zeroes of  f(x) = x^2 - 5x + k
  •  \alpha - \beta = 1

ᴛᴏ ғɪɴᴅ

  • Value of k.

ғᴏʀᴍᴜʟᴀ

  •  |\alpha - \beta | = \frac{\sqrt{D}}{a} where D is the discriminant.

  •  (\alpha + \beta )^2 - (\alpha - \beta )^2 = 4\alpha \beta

ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴ

Method I

Here,

\implies \alpha + \beta  = 5,\:\alpha \beta = k

Now,

\implies (\alpha + \beta )^2 - (\alpha - \beta )^2 = 4\alpha \beta

\implies 5^2 - 1^2 = 4k

\implies 25 - 1 = 4k

\implies k = \frac{24}{4}

\implies k = 6

Method II

Here,

\implies |\alpha - \beta | = \frac{\sqrt{b^2 - 4ac}} {a}

\implies 1 = \frac{\sqrt{(-5)^2 - 4.1.k}}{1}

\implies 1 = 25 - 4k

\implies 4k = 25 - 1

\implies 4k = 24

\implies k = \frac{24}{4}

\implies k = 6

Similar questions