If α and β are the zeros of the
polynomial f(x)= x² - x- 4 , find
the value of 1/α + 1/β - αβ
-αβ
Answers
Answered by
1
Answer:
f(x)=x2−x−4
f(x)=x2−x−4α+β=1
f(x)=x2−x−4α+β=1αβ=−4
f(x)=x2−x−4α+β=1αβ=−4→α1+β1−αβ
f(x)=x2−x−4α+β=1αβ=−4→α1+β1−αβ=αβα+β−αβ
f(x)=x2−x−4α+β=1αβ=−4→α1+β1−αβ=αβα+β−αβ=−41−(−4)
f(x)=x2−x−4α+β=1αβ=−4→α1+β1−αβ=αβα+β−αβ=−41−(−4)=4−1+4
f(x)=x2−x−4α+β=1αβ=−4→α1+β1−αβ=αβα+β−αβ=−41−(−4)=4−1+4=415
Similar questions
Math,
3 months ago
English,
3 months ago
Math,
6 months ago
Computer Science,
6 months ago
Math,
10 months ago