Math, asked by Sagar8306, 1 month ago

if α and β are the zeros of the quadratic polynomial 2x2 + 5x + 2, then find the value of α^4 + β^4please answer fas​

Answers

Answered by ImperialGladiator
4

Answer:

Explanation:

Given polynomial,

⇒ 2x² + 5x + 2

Finding it's zeros.

By quadratic formula :

 \longrightarrow \bf \dfrac{ - b \pm \sqrt{ {(b)}^{2}  - 4ac} }{2a}

On comapring the polynomial with the general form of quadratic equation i.e,. ax² + bx + c

We get,

  • a = 2
  • b = 5
  • c = 2

Substituting the given values,

=  \dfrac{ - 5 \pm \sqrt{(5 {)}^{2} - 4(2)(2) } }{2(2)}  \\  =  \dfrac{ -5\pm \sqrt{25 - 16} }{4}  \\  =  \dfrac{-5 \pm \sqrt{9} }{4}  \\  =  \dfrac{-5 \pm 3}{4}  \\  =  \dfrac{-8}{4}  \: { \rm \: or} \:  \frac{ - 2}{4}  \\   \sf \therefore\:  \alpha =  - 2 \: { \rm \: and} \:   \beta  = \frac{ - 1}{2}

Finding the value of :

  \longrightarrow\sf { \alpha }^{4} +   { \beta }^{4}

\sf \longrightarrow \:  {(-2)}^{4}  + \bigg( \dfrac{-1}{2}\bigg)^{4}

\sf \longrightarrow \: 16  + \dfrac{1}{16}

\sf \longrightarrow \:  \dfrac{ 256+ 1}{16}

\sf \longrightarrow \:  \dfrac{ 257}{16}

{ \underline{ \sf \therefore{ { \alpha }^{4}  +  { \beta }^{4}  =  \dfrac{257}{16} }}}

Similar questions