Math, asked by AatishBagal, 2 months ago

If α and β are the zeros of the quadratic polynomial f(x) = 2x² -5x + 7, find a polynomial whose zeros are 2α+ 3β and 3α+ 2β? [Class 10]

Answers

Answered by sauravbharti1986
1

Answer:

K[x^{2}  -  25x +25]

Step-by-step explanation:

given , polynomial   f(x) =   2x^{2} - 5x +7

zeroes  = α  and β

since,  sum of zeroes  = - b/a

           α+ β=   - (-5)/1

                    = 5

 product of zeroes  =   c/a  

              αβ  =   7/1 = 7

Now,    sum of zeroes                        ;     product of zeroes

 (2α +  3 β )  +   (3β  +2α)                               (2α +  3 β ) (3β  +2α)  

           =    2α +  3 β + 3β  +2α               =           (2α +  3 β )^2      

            =     5α + 5β                                =           (5)^2

            =   5 (   α+ β  )                             =        25

         =    5 ( 5)

          = 25

 hence,   required polynomial  

=   k [ x^2 -   (   (2α +  3 β )  +   (3β  +2α)  ) x + (2α +  3 β ) (3β  +2α)  ]

=    k [ x^2 - 25x +25]

Answered by Anonymous
55

Answer:

 \tt \purple{FORMULA  \: USED :  - }

 \tt{{ \alpha }^{2}  +  { \beta }^{2}  =  {( \alpha  +  \beta )}^{2}  -  \alpha  \beta }

\mathtt\purple{GIVEN:-}

If α and β are the zeros of the quadratic polynomial f(x) = 2x² -5x + 7

\mathtt\purple{SOLUTION:-}

So,

 \alpha   + \beta  = \purple{  \frac{ - b}{a} }

 \alpha   + \beta  = \purple{  \frac{ -( - 5)}{2} }

And

 \alpha  \beta  =  \purple{ \frac{c}{a} }

 \alpha  \beta  =  \purple{ \frac{7}{2} }

Now,

 \tt \purple{SUM \: OF  \: THE  \: ZEROS (s)\:}   \tt{= (2 \alpha  + 3 \beta ) + (3 \alpha  + 2 \beta )}

 \implies \mathtt{5 \alpha  + 5 \beta }

 \implies \tt \purple{5(\alpha  + \beta )}

Now Substitute the value of α+β that we get above

 \implies \tt \purple{5 \times  \frac{5}{2} }

 \implies \tt \purple{ \frac{25}{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\tt\purple{PRODUCT \:  OF  \: THE  \: ZEROS (p)\:}  =  \tt{\: (2 \alpha  + 3 \beta )(3  \alpha  + 2 \beta)}

 \implies \tt{{6 \alpha }^{2}  + 9 \alpha  \beta  + 3 \alpha  \beta  +  {6 \beta }^{2} }

 \implies \tt{6({ \alpha }^{2}   +  { \beta }^{2} )+ 13 \alpha  \beta }

 \implies \tt{6{ \alpha }^{2}   + 6 { \beta }^{2} + 12 \alpha  \beta  +  \alpha  \beta }

  \implies \tt{6( { \alpha }^{2}  +  { \beta }^{2}  + 2 \alpha  \beta ) -   \alpha  \beta }

  \implies \tt{6( { \alpha } +  { \beta })^{2}   -  \alpha  \beta }

Now Substitute the value of αβ that we get above

 \implies \tt{6 \times ( \frac {5}{2} )^{2}   +  \frac{7}{2}  }

 \implies \tt{6 \times ( \frac {25}{4} )  + \frac{7}{2}  }

 \implies \tt{ \frac {75}{2}  +  \frac{7}{2}  }

 \implies \tt{  \frac{82}{2}  }

 \implies \tt{ 41  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\tt\purple{PRODUCT \:  OF  \: THE  \: ZEROS (p)\:}  = \tt{  41}

 \tt \purple{SUM \: OF  \: THE  \: ZEROS (s)\:}   \tt{= \frac{25}{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\mathtt{GENERAL  \: FORM  \: OF \:  EQUATION}

\tt\purple{ {x}^{2} \: -SUM \:  OF \:  ZEROS(x) + PRODUCT \:  OF \:  ZEROS}

 \tt{ {x}^{2} -  \frac{25x}{2}  + 41 }

Similar questions