Math, asked by Taranity, 3 months ago

if α and β are the zeros of the quadratic polynomial f(x) = 2x2 – 5x + 7, then find α/β+β/α

Answers

Answered by MathCracker
13

Question :-

if α and β are the zeros of the quadratic polynomial f(x) = 2x2 – 5x + 7, then find α/β+β/α.

Solution :-

Given Quadratic Equation :

  • 2x² - 5x + 7

When the quadratic equation x² have a numerical and we have to factories it then multiply then numerical with c. Mean that the last number.

We get,

 \sf:  \longmapsto{x {}^{2} - 5x + 14  }

Factories the Quadratic equation by splitting the middle term

\sf:  \longmapsto{x {}^{2}  - 5x + 14 = 0}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \sf:  \longmapsto{x {}^{2} - 7x + 2x + 14 = 0 }  \:  \:  \:  \\  \\ \sf:  \longmapsto{x(x - 7) + 2(x - 7) =  0} \\  \\ \sf:  \longmapsto{(x - 7 )(x + 2) = 0}  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \sf:  \longmapsto{x - 7 = 0} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \bf:  \longmapsto \red{x = 7} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf:  \longmapsto{x + 2 = 0}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \bf:  \longmapsto \red{x =  - 2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

We got α and β.

 \rm  :\longmapsto{ \alpha  = 7}  \:  \:  \:  \: \\  \\ \rm  :\longmapsto{ \beta  =  - 2}

We Need to find :

\rm  :\longmapsto{ \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha } } \\

On substituting values we get,

\sf  :\longmapsto{ \frac{7}{ - 2} +  \frac{ - 2}{7}  }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \sf  :\longmapsto{ \frac{(7 \times 7) + ( - 2 \times  - 2)}{ - 2 \times 7} } \\  \\ \sf  :\longmapsto{ \frac{49 + 4}{ - 14} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \sf  :\longmapsto{ \frac{53}{ - 14} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence,

 \red \bigstar \:  \: { \boxed{ \sf{  \frac{ \alpha }{ \beta } +  \frac{ \beta }{ \alpha }  =  \frac{53}{ - 14}  }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn more from brainly :

If α and β are the zeroes of the quadratic polynomial f(x)=ax2+bx+c

then evaluate,a(α²/β+β²/α)+b(α/β+β/α).

https://brainly.in/question/16537882

Answered by navnitkrishnabc663
1

Answer:

This might help you

Step-by-step explanation:

a+b= 5/2

ab=7/2

a/b+b/a = a+b/ab = 5/2/7/2=5/7

Similar questions