Math, asked by aryanluis, 9 months ago

If α and β are the zeros of the quadratic polynomial f(x) = 3x2– 4x + 5, find a polynomial whose zeros are 2α + 3β and 3α + 2β.

Answers

Answered by mohammadabid94
4

Answer:

done. have patience to solve it

Attachments:
Answered by mysticd
3

 Given \: \alpha \:and \: \beta \: are \: zeroes

 of \: the \: Quadratic \: polynomial

 f(x) = 3x^{2} - 4x + 5 .

/* Compare f(x) with ax²+bx+c , we get */

 a = 3 , b = -4 \:and \: c = 5

 i) Sum \:of \:the \: zeroes = \frac{-b}{a}

 \implies \alpha + \beta = \frac{-(-4)}{3}

 = \frac{4}{3}\: ---(1)

 ii) Product \:of \:the \: zeroes = \frac{c}{a}

 \implies \alpha  \beta = \frac{5}{3}\: --(2)

 = \frac{4}{3}\: ---(1)

 Given, ( 2\alpha + 3\beta) \: and \: ( 3\alpha + 2\beta)

 are \: zeroes \: of \: another \: polynomial

 iii) Sum \: of \: the \: zeroes

 = ( 2\alpha + 3\beta)+( 3\alpha + 2\beta)

 = ( 5\alpha + 5\beta)

 = 5 ( \alpha + \beta)

 = 5 \times \frac{4}{3}

 = \frac{20}{3} \: --(3)

 iv) Product\: of \: the \: zeroes

 = ( 2\alpha + 3\beta)( 3\alpha + 2\beta)

 = 6\alpha^{2} + 4\alpha \beta + 9\alpha \beta + 6\beta^{2}

 = 6(\alpha^{2} + \beta)^{2} )+ 13\alpha \beta

 = 6 [ (\alpha + \beta)^{2} - 2\alpha \beta] + 13\alpha \beta

 = 6 (\alpha + \beta)^{2} - 12\alpha \beta+13\alpha \beta

 = 6 (\alpha + \beta)^{2} +\alpha \beta

 = 6 \times \Big(\frac{4}{3}\Big)^{2} + \frac{5}{3}

 = 6 \times \frac{16}{9} + \frac{5}{3}

 = \frac{32}{3} + \frac{5}{3}

 = \frac{32+5}{3}

 = \frac{37}{3}\: ---(4)

 Now,\pink{ Required \: polynomial : }

 \pink{= k[ x^{2} - (sum \:of \:the \: zeroes)+ product \:of \: zeroes ] }

 = k[ x^{2} -  \frac{20}{3} x + \frac{37}{3}]

/* For all real value of k it is true */

 If \: k= 3 \:then \: the \: polynomial \: is

 \green { = 3x^{2} - 20x + 37 }

•••♪

Similar questions