If α and β are the zeros of the quadratic polynomial f(x) = x² - px + q, prove that (α²/β²) + (β²/α²) = (p⁴/q²) - (4p²/q) + 2
Answers
(α²/β²) + (β²/α²) = p⁴/q² - 4p²/q + 2 if α and β are the zeros of the quadratic polynomial f(x) = x² - px + q,
Step-by-step explanation:
α and β are the zeros of the quadratic polynomial
f(x) = x² - px + q
α + β = p
αβ = q
LHS = (α²/β²) + (β²/α²)
= (α⁴ + β⁴)/(α²β²)
= ((α² + β²)² - 2α²β² )/(αβ)²
= ( ((α + β)² - 2αβ)² - 2(αβ)² )/(αβ)²
= ( (p² - 2q)² - 2q²)/q²
= ( p⁴ + 4q² - 4p²q - 2q²)/q²
= ( p⁴ - 4p²q + 2q²)/q²
= p⁴/q² - 4p²/q + 2
= RHS
QED
Proved
(α²/β²) + (β²/α²) = p⁴/q² - 4p²/q + 2
Learn more:
If one root of the quadratic equation 2x^2+kx-6=0 is 2 then fin find ...
https://brainly.in/question/7564820
If one root of the quadratic equation kx^2-3x-1=0 is 1/2 the find value ...
https://brainly.in/question/7551719
Find the roots of the quadratic equation 2x^2-22x+1=0 - Brainly.in
https://brainly.in/question/8643624
Answer:
Step-by-step explanation:
α and β are the zeros of the quadratic polynomial
f(x) = x² - px + q
α + β = p
αβ = q
LHS = (α²/β²) + (β²/α²)
= (α⁴ + β⁴)/(α²β²)
= ((α² + β²)² - 2α²β² )/(αβ)²
= ( ((α + β)² - 2αβ)² - 2(αβ)² )/(αβ)²
= ( (p² - 2q)² - 2q²)/q²
= ( p⁴ + 4q² - 4p²q - 2q²)/q²
= ( p⁴ - 4p²q + 2q²)/q²
= p⁴/q² - 4p²/q + 2
LHS= RHS
Hence Proved
(α²/β²) + (β²/α²) = p⁴/q² - 4p²/q + 2