Math, asked by abbi26, 11 months ago

if α and β are the zeros of the quadratic polynomial x^2-2x+1 then α^3+β^3 is​

Answers

Answered by LovelyG
4

Answer:

\large{\underline{\boxed{\sf \alpha^3 +\beta^3 = 2}}}

Step-by-step explanation:

Given that ;

α and β are the zeroes of the quadratic polynomial x² - 2x + 1. On comparing the given equation with ax² + bx + c, we get -

  • a = 1
  • b = - 2
  • c = 1

Sum of zeroes = \bf - \dfrac{b}{a}

⇒ α + β = \sf \dfrac{-(-2)}{1}

⇒ α + β = 2

Product of zeroes = \bf \dfrac{c}{a}

⇒ αβ = 1

\rule{300}{2}

We need to find, α³ + β³. So, we know that :

α³ + β³ = (α + β)³ - 3αβ(α + β)

⇒ α³ + β³ = (2)³ - 3 * 1 * 2

⇒ α³ + β³ = 8 - 6

⇒ α³ + β³ = 2

Hence, the answer is 2.

Answered by BrainlyConqueror0901
73

Answer:

\huge{\red{\boxed{\boxed{\green{\sf{\alpha^{3}+\beta^{3}=2}}}}}}

Step-by-step explanation:

\huge{\red{\boxed{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}}

x^{2}-2x+1=0

□α and β are the zeros

To find:

\alpha^{3}+\beta^{3}=?

 {x}^{2}   -  2x + 1= 0 \\  \alpha  \: and \:  \beta  \: are \: the \: zeroes \: of \: this \: quadratic \: eqn \\  a{x}^{2}  + bx + c = 0 \\ compare \: this \: eqn \: to \: given \: eqn \\  \\ a = 1 \\ b =  - 2 \\ c = 1 \\  \\  \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{ -  (- 2)}{1}  =  2 \\  \\  \alpha  \beta  =  \frac{c}{a}   =  \frac{1}{1}  = 1 \\  \\  \alpha ^{3}  +  { \beta }^{2}  = ( { \alpha  +  \beta )}^{3}  - 3 \alpha  \beta ( \alpha  +  \beta ) ^{2}  \\ put \: the \: values \: of \: sum \: and \: product \: of \: roots \\   \alpha^{3}  +  \beta^{3}   =( {2})^{3}  - 3 \times 1(2)^{2}  \\   \alpha^{3}  +  { \beta }^{3}  = 8 - 3 \times 2 \\  { \alpha }^{ 3}  +  { \beta }^{ 3}  = 2

\huge{\red{\boxed{\boxed{\green{\sf{\alpha^{3}+\beta^{3}=2}}}}}}

_________________________________________

Similar questions