Math, asked by dashneha616, 7 months ago

If α and β are two zeroes of the polynomial 25x2

-15x+2, find a

quadratic polynomial whose zeroes are 1/2α and1/2β.
Pls help !!!!!​

Answers

Answered by kaushik05
12

Given:

  \alpha    \: \ \: and \:  \:  \beta  \: are \:  \: the \:  \: zeroes \:  \: of \:  \\  \: the \:  \: polynomial \:   \: 25 {x}^{2}  - 15x + 2

To find :

 \star \: the \: quadratic \: polynomial \: whose \: zeroes \: are \\  \:  \frac{1}{2 \alpha }  \:  \:and \:  \:  \frac{1}{2 \beta } .

Solution :

 \star \: p(x) = 25 {x}^{2}  - 15x + 2

Here ,

• a = 25 , b = -15 and c = 2

 \star \:  \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{ - ( - 15)}{25}  =  \frac{3}{5}  \\  \\ \star   \:  \alpha  \beta  =  \frac{c}{a}  =  \frac{2}{25}

Now , to find the polynomial whose zeroes are

 \frac{1}{2 \alpha }  \:a nd \:  \frac{1}{2 \beta }

sum of Zeroes :

 \star \:  \frac{1}{2 \alpha }  +  \frac{1}{2 \beta }   \\ =  >  \frac{2( \alpha  +  \beta )}{4 \alpha  \beta }  \\  =  >  \frac{ \alpha  +  \beta }{2 \alpha  \beta }   \\ =  >  \frac{ \frac{3}{5} }{2 (\frac{2}{25}) }    \\  =  >  \frac{3}{5}  \times  \frac{25}{4}  =  \frac{15}{4}

Product of zeroes :

 \star \:  \frac{1}{2 \alpha }   \frac{1}{2 \beta }  =  \frac{1}{4 \alpha  \beta }   =  \frac{1}{4 (\frac{2}{25}) }  =  \frac{25}{8}  \\

Now, Polynomial :

• x² - ( sum of Zeroes ) x + product of zeroes .

 \implies \:  {x}^{2}  - ( \frac{15}{4} )x  + \frac{25}{8}  = 0 \\  \\  \implies \:  \frac{8 {x}^{2}  - 30x + 25}{8}  = 0 \\  \\  \implies \:  8{x}^{2}  - 30x + 25 = 0

The required quadratic equation is 8x² - 30 x +25.

Answered by parry8016
1

Step-by-step explanation:

HERE IS U R ANSWER DEAR PLZ FOLLW ME

Attachments:
Similar questions