Math, asked by chopravaibhav1234, 9 months ago

If α and β are zeroes of 2x²+3x-6,then α²+β²is

9/4

25/4

33/4

-3/2

Answers

Answered by Anonymous
0

Answer:

33/4

Step-by-step explanation:

2(x² + \frac{3}{2}x - 3) = 2[(x² + 2×\frac{3}{4}x + \frac{9}{16}) - \frac{9}{16} - 3 =

2[(x + \frac{3}{4})² - \frac{57}{16}] = 2(x + \frac{3}{4} - (√57)/4)(x + \frac{3}{4} + (√57)/4)

α = (√57 - 3) / 4

β = - (√57 + 3) / 4

α² + β² = [( (√57 - 3)² +  (√57 + 3)²] / 16 =

(57 - 6√57 + 9 + 57 + 6√57 + 9) / 16

(114 + 18) / 16 = 132 / 16 = 33/4

Answered by Anonymous
0

Answer:

33/4

Step-by-step explanation:

\alpha  \beta  =  \frac{c}{a}  \\  \alpha  \beta  =  \frac{ - 6}{2}   \\  \alpha  \beta  =  - 3 \: and\\ \alpha  +  \beta  = -   \frac{  b}{a}  \\  \alpha  +  \beta  =  -  \frac{3 }{2}   \\ ( { \alpha  +  \beta )}^{2} =  \frac{9}{4} \\  { \alpha }^{2}  +  { \beta }^{2}  + 2 \alpha  \beta  =  \frac{9}{4} \\   { \alpha}^{2}  +  { \beta }^{2}  - 2 \times 3 =  \frac{9}{4}  \\  { \alpha}^{2}  +  { \beta }^{2}   =  \frac{9}{4}  + 6 \\  { \alpha }^{2}  +  { \beta }^{2}  =  \frac{33}{4}

Similar questions