if α and β are zeroes of polynomial of the polynomial x²+x-2 find 1/α - 1β
Answers
Answered by
4
Solution
Given :-
- polynomial , x² + x - 2 = 0
- α and β are zeroes of this polynomial
Find :-
- Value of 1/α - 1/β
Explanation
Using Formula,
★ Sum of zeroes = -(coefficient of x)/(coefficient of x²)
★product of zeroes = (constant part)/(coefficient of x²)
★ ( α - β) = √[(α + β)² - 4α β]
________________________
Now, calculate,
➡ Sum of zeroes = -(coefficient of x)/(coefficient of x²)
➡ (α + β) = -1 __________(1)
Again,
➡product of zeroes = (constant part)/(coefficient of x²)
➡ (α β) = -2 _____________(2)
So, Now calculate (α - β)
➡ ( α - β) = √[(α + β)² - 4α β]
keep all above values
➡ ( α - β) = √[(-1)² - 4*(-2)]
➡( α - β) = √(1+8)
➡( α - β) = √9
➡( α - β) = 3 _______________(3)
Now, calculate (1/α - 1/β)
➡ (1/α - 1/β) = ( α - β)/α β
Keep value by equ(2) & equ(3)
➡ (1/α - 1/β) = 3/(-2)
➡ (1/α - 1/β) = -3/2
Hence
- Value of (1/α - 1/β) be = -3/2
________________
Answered by
1
Answer:
hope this will help u ❤️
Attachments:
Similar questions