if α and β are zeroes of polynomial of the polynomial x²+x-2 find 1/α - 1β
Answers
Step-by-step explanation:
Solution
Answer:
Given :-
polynomial , x² + x - 2 = 0
α and β are zeroes of this polynomial
Find :-
Value of 1/α - 1/β
Explanation
Using Formula,
★ Sum of zeroes = -(coefficient of x)/(coefficient of x²)
★product of zeroes = (constant part)/(coefficient of x²)
★ ( α - β) = √[(α + β)² - 4α β]
________________________
Now, calculate,
➡ Sum of zeroes = -(coefficient of x)/(coefficient of x²)
➡ (α + β) = -1 __________(1)
Again,
➡product of zeroes = (constant part)/(coefficient of x²)
➡ (α β) = -2 _____________(2)
So, Now calculate (α - β)
➡ ( α - β) = √[(α + β)² - 4α β]
keep all above values
➡ ( α - β) = √[(-1)² - 4*(-2)]
➡( α - β) = √(1+8)
➡( α - β) = √9
➡( α - β) = 3 _______________(3)
Now, calculate (1/α - 1/β)
➡ (1/α - 1/β) = ( α - β)/α β
Keep value by equ(2) & equ(3)
➡ (1/α - 1/β) = 3/(-2)
➡ (1/α - 1/β) = -3/2
Hence
Value of (1/α - 1/β) be = -3/2
________________
Zeros of polynomial are alpha - beta , alpha , alpha + beta
Sum of zeros = (alpha - beta) + (alpha) + (alpha + beta) = - b / a
3 * alpha = 3 / 1
alpha = 1
product of zeros = (alpha - beta) *(alpha) *(alpha + beta) = - d /a
Now put value of alpha = 1
(1 - beta) * 1 * (1+ beta) = -1
12 - beta2 = -1
- beta2 = -1-1
beta 2= 2
beta = + root 2
So alpha = 1 , beta = + root 2
alpha + beta = 1 + root 2
Thanks