Math, asked by okok102, 9 hours ago

If α and β are zeroes of the polynomial 3^2 + 2 + 3 ,then find 1/α^2 +1/β^2,urgent

Answers

Answered by ks78182k
2

Answer:

We have, f(x)=x2−1=0

We have, f(x)=x2−1=0⇒ (x−1)(x+1)=0

We have, f(x)=x2−1=0⇒ (x−1)(x+1)=0⇒ x=1 or −1

We have, f(x)=x2−1=0⇒ (x−1)(x+1)=0⇒ x=1 or −1⇒ α=−1,β=1

We have, f(x)=x2−1=0⇒ (x−1)(x+1)=0⇒ x=1 or −1⇒ α=−1,β=1New Roots are β2α and α2β

We have, f(x)=x2−1=0⇒ (x−1)(x+1)=0⇒ x=1 or −1⇒ α=−1,β=1New Roots are β2α and α2β=−2 or −2

We have, f(x)=x2−1=0⇒ (x−1)(x+1)=0⇒ x=1 or −1⇒ α=−1,β=1New Roots are β2α and α2β=−2 or −2⇒ Sum of new roots =−4

We have, f(x)=x2−1=0⇒ (x−1)(x+1)=0⇒ x=1 or −1⇒ α=−1,β=1New Roots are β2α and α2β=−2 or −2⇒ Sum of new roots =−4⇒ Product of new roots

We have, f(x)=x2−1=0⇒ (x−1)(x+1)=0⇒ x=1 or −1⇒ α=−1,β=1New Roots are β2α and α2β=−2 or −2⇒ Sum of new roots =−4⇒ Product of new roots

We have, f(x)=x2−1=0⇒ (x−1)(x+1)=0⇒ x=1 or −1⇒ α=−1,β=1New Roots are β2α and α2β=−2 or −2⇒ Sum of new roots =−4⇒ Product of new rootsa

Answered by user0888
8

Proper Question

If α and β are the two zeroes of the polynomial 3x^{2}+2x+3, find \dfrac{1}{\alpha ^{2}} +\dfrac{1}{\beta ^{2}}.

Solution and Alternative Approaches

Solution

From the given polynomial we get the following.

\implies \begin{cases} & \alpha +\beta =-\dfrac{2}{3}  \\  & \alpha \beta =1 \end{cases}

To find \dfrac{1}{\alpha ^{2}} +\dfrac{1}{\beta ^{2}} we consider how to use the given information. If we add the two fractions, we get the following.

\implies \dfrac{\alpha ^{2}+\beta ^{2}}{\alpha ^{2}\beta ^{2}}

One way to find the value is using identity.

Consider the following two numbers.

\alpha ^{2}+\beta ^{2}

\alpha ^{2}\beta ^{2}

In the first number, we square both sides of the equation.

\implies \alpha ^{2}+\beta ^{2}=(\alpha +\beta )^{2}-2\alpha \beta

\implies \alpha ^{2}+\beta ^{2}=(-\dfrac{2}{3} )^{2}-2

\implies \alpha ^{2}+\beta ^{2}=-\dfrac{14}{9}

In the second number, we square both sides of the equation.

\implies \alpha ^{2}\beta ^{2}=(\alpha \beta )^{2}

\implies \alpha ^{2}\beta ^{2}=1

Hence, the required number is the following.

\implies \dfrac{\alpha ^{2}+\beta ^{2}}{\alpha ^{2}\beta ^{2}}=\boxed{-\dfrac{14}{9}}

Alternative Approach

Let the given polynomial be P(x)=3x^{2}+2x+3. Consider another equation having the inverse solutions of the polynomial. Such polynomial is x^{2}\times P(\dfrac{1}{x} ).

\implies x^{2}\times P(x)=3x^{2}+2x+3

Hence, we get the following.

\implies \begin{cases} & \dfrac{1}{\alpha }+\dfrac{1}{\beta }=-\dfrac{2}{3}  \\  & \dfrac{1}{\alpha \beta }=1 \end{cases}

By squaring both sides of the equation, we get the following.

\implies \dfrac{1}{\alpha ^{2}} +\dfrac{1}{\beta ^{2}} =(\dfrac{1}{\alpha } +\dfrac{1}{\beta } )^{2}-2\times \dfrac{1}{\alpha \beta }

\implies \dfrac{1}{\alpha ^{2}} +\dfrac{1}{\beta ^{2}} =(-\dfrac{2}{3} )^{2}-2

\implies \dfrac{1}{\alpha ^{2}} +\dfrac{1}{\beta ^{2}} =\boxed{-\dfrac{14}{9}}

Similar questions