Math, asked by Anonymous, 9 months ago

If α, β and γ are zeroes of the polynomial:-
p(x) = (x - 1)(x² + x + 3).

Then, find the value of
(α³ + β³ + γ³)
________...

Class IX - CBSE Question (Maths.).​

Answers

Answered by Anonymous
42

Answer:

:\implies\sf p(x) =(x-1)(x^2+x+3)\\\\\\:\implies\sf p(x)=x(x^2+x+3)-1(x^2+x+3)\\\\\\:\implies\sf p(x) = x^3 + x^2 + 3x - x^2 - x - 3\\\\\\:\implies\sf p(x) = x^3 + 2x - 3 \\\\\bigstar\:\textsf{Here \: we \: have :} \\\\\textsf{ a = 1, \quad b = 0, \quad c = 2, \quad d = - \:3}

⠀⠀⠀\rule{160}{1}

\underline{\bigstar\:\textsf{Let's Consider a Formula :}}

\dashrightarrow\sf\:\:(\alpha)^3+(\beta)^3+(\gamma)^3 - 3\alpha \beta \gamma =( \alpha + \beta +  \gamma)(\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta  \gamma -  \gamma \alpha)\\\\\\\dashrightarrow\sf\:\:(\alpha)^3+(\beta)^3+(\gamma)^3 - 3\alpha \beta \gamma =\dfrac{-\:b}{a} \times (\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta  \gamma -  \gamma \alpha)\\\\\\\dashrightarrow\sf\:\:(\alpha)^3+(\beta)^3+(\gamma)^3 - 3\alpha \beta \gamma =\dfrac{0}{1} \times (\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta  \gamma -  \gamma \alpha)\\\\\\\dashrightarrow\sf\:\:(\alpha)^3+(\beta)^3+(\gamma)^3 - 3\alpha \beta \gamma = 0\\\\\\\dashrightarrow\sf\:\:(\alpha)^3+(\beta)^3+(\gamma)^3 = 3\alpha \beta \gamma\\\\\\\dashrightarrow\sf\:\:(\alpha)^3+(\beta)^3+(\gamma)^3 = 3\times\dfrac{-\:d}{a}\\\\\\\dashrightarrow\sf\:\:(\alpha)^3+(\beta)^3+(\gamma)^3 = 3\times\dfrac{-\:( - 3)}{1}\\\\\\\dashrightarrow\:\:\underline{\boxed{\sf (\alpha)^3+(\beta)^3+(\gamma)^3 = 9}}

\therefore\:\underline{\textsf{Hence, the required value will be \textbf{9}}}.

\rule{180}{2}

\boxed{\begin{minipage}{5.5 cm} {$\bigstar\: \textsf{For a Cubic Polynomial :}}\\\\ {\qquad\sf p(x) = ax$^3 +\:$bx^2$ + cx + d}\\\sf with zeroes \alpha,\:\beta \:\sf and \:\gamma \\\\ {\textcircled{\footnotesize1}} \:\:\alpha +\beta + \gamma = \dfrac{ - \:b}{a} \\ \\{\textcircled{\footnotesize2}} \: \:\alpha  \beta +  \beta  \gamma  +  \gamma \alpha  = \dfrac{c}{a} \\\\ {\textcircled{\footnotesize3}} \:\:\alpha  \beta  \gamma  = \dfrac{ - \:d}{a} \end{minipage}}

Answered by Anonymous
21

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

  \dagger \:  \:  \: {\sf{ p(x) = (x - 1)( {x}^{2} + x + 3) }} \\ \\

{\bf{\blue{\underline{To\:Find:}}}}

  \dagger \:  \: {\sf{  \alpha ^{3} +  { \beta}^{3}   +  { \gamma}^{3} }} \\ \\

{\bf{\blue{\underline{Now:}}}}

   : \implies {\sf{ p(x) = (x - 1)( {x}^{2} + x + 3) }} \\ \\

   : \implies {\sf{  (x - 1)( {x}^{2} + x + 3) }} \\ \\

   : \implies {\sf{   {x}^{3} +  {x}^{2}   + 3x -  {x}^{2}   - x - 3}} \\ \\

   : \implies {\sf{   {x}^{3} +  0 {x}^{2}      + 2x - 3}} \\ \\

Compare it with,

ax³+bx²+cx+d=0

___________________________________

 \dagger \: \boxed{\sf{sum \: of \: roots =  \frac{coeff. \: of \:  {x}^{n - 1} }{ coeff. \: {x}^{n} } =  \frac{ - b}{a}  }} \\ \\

 : \implies{\sf{  \alpha+ \beta +\gamma=  - \frac{0}{1} }} \\ \\

 : \implies{\sf{  \alpha+ \beta +\gamma  =  0 }} \\ \\

__________________________________

 \dagger \: \boxed{\sf{Pair \: Product =  \frac{coeff. \: of \:  {x}^{n - 2} }{ coeff. \: {x}^{n} } =  \frac{ c}{a}  }} \\ \\

 : \implies{\sf{  \alpha \beta +   \beta \gamma  +  \gamma \beta=   \frac{(2)}{1} }} \\ \\

 : \implies{\sf{  \alpha \beta +   \beta \gamma  +  \gamma \beta=   2}} \\ \\

__________________________________

 \dagger \: \boxed{\sf{  Product  \: of \: roots=  ( - 1) ^{n} \frac{constant \: term }{ coeff. \: {x}^{n} } =  \frac{  - d}{a}  }} \\ \\

 : \implies{\sf{  \alpha \beta \gamma =  -  \frac{( - 3)}{1} }} \\ \\

 : \implies{\sf{  \alpha \beta \gamma =  3 }} \\ \\

__________________________________

Now According to the ques,

  \implies\:  \: {\sf{  \alpha ^{3} +  { \beta}^{3}   +  { \gamma}^{3}  = 3 \alpha \beta \gamma \:  \:  \:  \:  \:  \: ( \because  \:  \alpha +  \beta +  \gamma = 0)}} \\ \\

  \implies\:  \: {\sf{  \alpha ^{3} +  { \beta}^{3}   +  { \gamma}^{3}  = 3 (3)}} \\ \\

  \implies\:  \: {\sf{  \alpha ^{3} +  { \beta}^{3}   +  { \gamma}^{3}  = 9}} \\ \\

Similar questions