Math, asked by sriharsha8706, 21 hours ago

If α and β are zeroes of the polynomial p(x)= x^2 + mx + n, then a polynomial whose zeroes are 1/apha , 1/beta is given by​

Answers

Answered by user0888
25

\rm\Huge\underline{\text{Method 1}}

\rm\large\underline{\text{Substitution}}

→ If the roots of the equation \rm p(x)=0 are \rm x=\alpha,\beta,  the roots of another equation are the reciprocals, \rm x=\dfrac{1}{\alpha},\dfrac{1}{\beta}.

\rm\cdots\longrightarrow p(\dfrac{1}{x})=n+\dfrac{m}{x}+\dfrac{1}{x^2}

\rm\cdots\longrightarrow x^2p(\dfrac{1}{x})=nx^2+mx+1

(As \rm\dfrac{1}{\alpha},\dfrac{1}{\beta} are numbers, the first equation does not have \rm x=0 as a root, as well as the second equation.)

Hence \rm nx^2+mx+1=0 is the answer.

\rm\Huge\underline{\text{Method 2}}

\rm\large\underline{\text{Relation between roots and coefficients}}

→ Also called the Vieta's formula, the sum and product of roots in an equation is decided by,

\rm\cdots\longrightarrow\red{\boxed{\text{(Sum)}=-\dfrac{\text{(Second-highest degree coefficient)}}{\text{(Leading coefficient)}}}}

\rm\cdots\longrightarrow\red{\boxed{\text{(Product)}=\dfrac{\text{(Constant term)}}{\text{(Leading coefficient)}}}}

In a quadratic equation, \rm ax^2+bx+c=0, that is, for two roots x=\alpha,\beta,

\rm\cdots\longrightarrow\red{\boxed{\alpha+\beta=-\dfrac{\text{b}}{\text{a}}}}

\rm\cdots\longrightarrow\red{\boxed{\alpha\beta=\dfrac{\text{c}}{\text{a}}}}

Let's find the sum and product of roots.

\rm\cdots\longrightarrow \alpha+\beta=-m

\rm\cdots\longrightarrow \alpha\beta=n

Accordingly, the sum and the product of reciprocals are,

\rm\cdots\longrightarrow \dfrac{1}{\alpha}+\dfrac{1}{\beta}=\dfrac{\alpha+\beta}{\alpha\beta}=-\dfrac{m}{n}

\rm\cdots\longrightarrow \dfrac{1}{\alpha\beta}=\dfrac{1}{n}

Consequently, the equation with two roots of above is,

\rm\cdots\longrightarrow x^2+\dfrac{m}{n}x+\dfrac{1}{n}=0

\rm\cdots\longrightarrow nx^2+mx+1=0

Hence \rm nx^2+mx+1=0 is the answer.

Similar questions