Math, asked by EM26, 10 months ago

If α and β are zeroes of the polynomial q(x)=x2-7x+10, then find the value of (α+β)2-4αβ

Answers

Answered by shivaranjani1218
1

Step-by-step explanation:

x²-7x+10

x²-5x-2x+10

x(x-5)-2(x-5)

(x-2)(x-5)

x=2 or x=5

alpha and beta are 2 and 5

(5+2)2-4(5)(2)

7(2)-4(10)

14-40

26

Answered by Cynefin
11

━━━━━━━━━━━━━━━━━━━━

Required Answer:

♦️ GiveN:

  • \large{\alpha} and \large{\beta} are the zeroes of the polynomial q(x) = \large{\rm{{x}^{2} - 7x +10}}.

♦️ To FinD:

  • Value of \large{\rm{{(\alpha + \beta)}^{2}-4 \alpha \beta}}........?

━━━━━━━━━━━━━━━━━━━━

Explanation of Concept:

The above question deals with the roots of the quadratic equation and we should know a simple relation between the zeroes to solve the above question.

Relation:-

If \large{\alpha} and \large{\beta} are the roots of the quadratic equation \large{\rm{a{x}^{2}+ bx+c}}

 { \dag{ \boxed{ \rm{ \purple{sum \: of \: the \: roots =   - \frac{coefficient \: of \: x}{coefficient \: of \:  {x}^{2} }}}}}} \\  \\  \large{ \rm{ \implies{ \alpha  +  \beta  =  \frac{ - b}{a} }}} \\  \\  { \dag{ \boxed{ \purple{ \rm{product \: of \: roots =  \frac{constant \: term}{coefficient \: of \:  {x}^{2} } }}}}} \\  \\  \large{ \rm{ \implies{ \alpha  \beta  =  \frac{c}{a} }}}

By using these formula or concepts, let's find the roots of the equation and the answer of the final sum.

━━━━━━━━━━━━━━━━━━━━

Solution:

Given, equation \large{\rm{{x}^{2} - 7x +10}}.

And \large{\alpha} and \large{\beta} are its zeroes.

By using formula, Sum of roots

 \large{ \rm{ \dashrightarrow \:  \alpha  +  \beta  =  \frac{ - ( - 7)}{1}}} \\  \\ \large{ \rm{ \dashrightarrow \:  \alpha  +  \beta  = 7 }}

By using formula, Product of roots

\large{ \rm{ \dashrightarrow \:  \alpha  \beta  =  \frac{10}{1}}} \\  \\  \large{ \rm{ \dashrightarrow \:  \alpha  \beta  = 10}}

We have to find:

\large{ \star{ ( \alpha  +  \beta ) {}^{2} - 4 \alpha  \beta }}

Putting the above values,

\large{ \rm{ \dashrightarrow \:  {(7)}^{2} - 4(10)}} \\  \\ \large{ \rm{ \dashrightarrow \: 49 - 40}} \\  \\ \large{ \rm{ \dashrightarrow \:  \boxed{ \red{ \rm{9 \: }}}}} \\  \\  \large{ \therefore{ \underline{ \underline{ \rm{ \blue{Hence \: solved \:  \dag}}}}}}

━━━━━━━━━━━━━━━━━━━━

Similar questions