Math, asked by vinodthakkar5566, 5 months ago

If α and β are zeroes of the quadratic polynomial f(x)=x²+px+1 then find the values of (1) α²+β² (2) 1/α+1/β​

Answers

Answered by kaushik05
77

Given:

 \star \: \bold{  \alpha  \: and \:  \beta  \: are \: the \: zeroes \: of \: the \: polynomial} \: \\ \bold{  f \: (x) =  {x}^{2}  + px + 1}.

To find :

•The values of :

1) { \alpha }^{2}  +  { \beta }^{2}  \\  \\ 2) \frac{1 }{ \alpha  }  +  \frac{1}{  \beta }

Solution :

• F(x) = x² +px +1 .

Compare with ax² + bx + c ,we get :

• a = 1 , b = p and c = 1

As we know that :

 \star  \bold{\: sum \: of \: zeroes \: ( \alpha  +  \beta ) =  \dfrac{ - b}{a}  =  \frac{ - p}{1}  = -  p} \\  \\  \star \bold{ product \: of \: zeroes \: ( \alpha  \beta ) =  \frac{c}{a}  =  \dfrac{1}{1}  = 1} \\

Now, find

 1)  { \alpha }^{2}  +  { \beta }^{2}  =  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta  \\  \\  \implies \:  { \alpha }^{2}  +   { \beta }^{2}  =  {( - p)}^{2}  - 2(1) \\   \\  \implies \:  { \alpha }^{2}  +  { \beta }^{2}  =  {p}^{2}  - 2

2) \:  \dfrac{1}{ \alpha }  +  \dfrac{1}{ \beta }  =  \dfrac{ \beta  +  \alpha }{ \alpha  \beta }  =  \dfrac{ - p}{1}  =  - p

Answered by premjagadeesh4
23

hey mate refer the attachment....

Attachments:
Similar questions