Math, asked by kusum6616, 1 year ago

 If α and β are zeroes of the quadratic polynomial x2 – 6x + a; find the value of ‘a’ if 3α + 2β = 20.​

Answers

Answered by KONNECT
1

 \alpha  +  \beta  = 6 \\ 3( \alpha  +  \beta ) = 18 \\ 3 \alpha  + 2 \beta  = 20 \\  \beta  =  - 2 \\  \alpha  = 8 \\  \\ a =  - 16

Hope this answer is correct!!!!

(but I think that its incorrect).....

Answered by silentlover45
4

\large\underline\pink{Given:-}

  • α and β are zeroes of the quadratic polynomial x2 – 6x + a
  • 3α + 2β = 20

\large\underline\pink{To find:-}

  • Fine the value of ‘a’ ....?

\large\underline\pink{Solutions:-}

  • p (x) = x² - 6x + a
  • 3α + 2β = 20 _______(i)

we know that:-

α + β = -b/a

α + β = -(-6)/1

α + β = 6

αβ = c/a

αβ = a/1

αβ = a

Now,

3α + 2β = 20

(3 + 2) (α + β) - 3β - 2α = 20

(3 + 2) (6) - 2α - 3β = 20

5 × 6 - 20 = 2α + 3β

30 - 20 = 2α + 3β

10 = 2α + 3β

2α + 3β = 10________(ii)

multiplying Eq. (i) by 2 and Eq. (ii) by 3, we get.

  • 6α + 4β = 40 ________(iii)
  • 6α + 9β = 30 _______(iv)

Subtracting Eq. (iii) from Eq. (iv).

 {6α} \: + \: {4β} \: \: = \: \: {40} \\ {6α} \: + \: {9β} \: \: = \: \: {30} \\ \underline{ \: \: - \: \: \: \: \: \: \:  \: - \: \: \: \: \: \: = \: \: \: - \: \: \: \:  } \\ \: \: \: \: \: \: \: \: \: \: \: {-5β} \: \: \: \: \: = \: \: \: {10}

\: \: \: \: \:  \leadsto \: \: β \: \: = \: \: {-2}

putting the value β in Eq. (i)

3α + 2β = 20

3α + 2 (-2) = 20

3α - 4 = 20

3α = 20 + 4

3α = 24

α = 8

The value of α is 8 and β is -2.

Now, the value of a is

αβ = a

8 × (-2)

-16

Hence, the value of a is -16.

Similar questions