Math, asked by aanchaldhiman8293, 10 months ago

If α and β are zeros of the polynomial x2 + 5x + 6, then what is the value of α + β?

Answers

Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\alpha+\beta=-5}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  {x}^{2} +5x+6 = 0 \\  \\  \tt: \implies  \alpha  \: and \:  \beta  \: are \: the \: zeores  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies  { \alpha } +  { \beta }  = ?

• According to given question :

\bold{As \: we \: know \: that}  \\  \tt:  \implies  {x}^{2}  + 5x + 6 = 0 \\  \\ \tt:  \implies  {x}^{2}  + 3x + 2x + 6 = 0 \\  \\ \tt:  \implies x(x + 3) + 2(x + 3) = 0 \\  \\ \tt:  \implies (x + 3)(x + 2) = 0 \\  \\  \green{\tt:  \implies x =  - 3 \: and \:  - 2} \\  \\  \tt \circ \:  \alpha  =  - 3 \\  \\ \tt \circ \:   \beta  =  - 2 \\  \\   \bold{For \: finding \: value : } \\ \tt :  \implies  \alpha  +  \beta  \\  \\ \tt :  \implies  - 3 - 2 \\  \\  \green{\tt :  \implies  - 5} \\  \\   \green{\tt \therefore  \alpha  +  \beta  =  - 5} \\  \\  \bold{Alternate \: method : } \\ \tt :  \implies Sum \: of \: zeroes =   \frac{ - b}{a} \\  \\ \tt :  \implies  \alpha  +  \beta  =  \frac{ - 5}{1} \\  \\   \green{\tt :  \implies  \alpha  +  \beta  =  - 5}

Answered by Saby123
19

QUESTION :

If α and β are zeros of the polynomial x2 + 5x + 6, then what is the value of α + β?

SOLUTION :

Sum of the Zeroes of a polynomial is equal to -b/a

From the given Polynomial we can find that :

b = 5

a = 1

-b/a = -5

Hence the answer was -5.

Similar questions