Math, asked by nibirb26, 10 days ago

if α and β are zeros of the polynomial x²-p(x+1)+c such that (α+1) (β+1) =0, then find the value of c.​

Answers

Answered by FiercePrince
12

Given that , The α and β are zeros of the polynomial x²-p(x+1)+c such that (α+1) (β+1) =0 .

Exigency To Find : The value of c ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀⠀⠀G I V E NP O L Y N O M I A L : x² - p( x + 1 ) + c

\qquad \dashrightarrow \sf Polynomial \:=\: x^2 - p ( x + 1 ) + c \:\:

\qquad \dashrightarrow \sf Polynomial \:=\: x^2 - p ( x + 1 ) + c \:\:

\qquad \dashrightarrow \sf Polynomial \:=\: x^2 - p x - p  + c \:\:

\qquad \dashrightarrow \sf Polynomial \:=\: x^2 - p x + ( c - p ) \:\:

\qquad \dashrightarrow \sf Polynomial \:=\: x^2 - px + ( c - p ) \:\qquad  \:\bigg\lgroup \sf{ Standard \:Form}\bigg\rgroup\:

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \qquad \pmb{\mathbb{ POLYNOMIAL  \:\::\:\: } \sf x^2 - px + ( c - p ) \:}\\

As, We know that ,

\qquad\underline {\boxed {\pmb{ \:\maltese \;Sum \:of \:zeroes \:\:\red {\:( \:\alpha \: + \beta )}\::}}}\\\\

\qquad \dashrightarrow \sf \bigg( \alpha \:+ \beta \: \bigg) \:=\:\dfrac{\:-(Cofficient \:of \:x\:)\:\:}{Cofficient \:of \:x^2 \:}

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

 \qquad \dashrightarrow \sf \bigg( \alpha +\:\beta \: \bigg) \:=\:\dfrac{-(\:Cofficient \:of \:x\:)}{Cofficient \:of \:x^2 \:}\\\\\qquad \dashrightarrow \sf \bigg( \alpha \:+ \beta \: \bigg) \:=\:\dfrac{-(\:-p\:)}{1 \:}\\\\\qquad \dashrightarrow \sf \bigg( \alpha \:+ \beta \: \bigg) \:=\:\dfrac{p\:}{1 \:}\\\\\qquad \dashrightarrow \sf \alpha \:+ \beta \: \:=\:p\\\\\dashrightarrow \underline{\boxed{\purple{\pmb{\frak{ \:\alpha \:+ \beta \: \:=\:p\: }}}}}\:\:\bigstar \\\\

⠀⠀⠀⠀⠀AND ,

\qquad\underline {\boxed {\pmb{ \:\maltese \;Product \:of \:zeroes \:\:\red {\:( \:\alpha \: \beta )}\::}}}\\\\

\qquad \dashrightarrow \sf \bigg( \alpha \:\beta \: \bigg) \:=\:\dfrac{\:Constant \:Term\:\:}{Cofficient \:of \:x^2} \:

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \dashrightarrow \sf \bigg( \alpha \:\beta \: \bigg) \:=\:\dfrac{\:Constant\:Term\:}{Cofficient \:of \:x^2 \:}\\\\\qquad \dashrightarrow \sf \bigg( \alpha \: \beta \: \bigg) \:=\:\dfrac{\:( c - p )\:}{1 \:}\\\\\qquad \dashrightarrow \sf \bigg( \alpha \: \beta \: \bigg) \:=\:\cancel{\dfrac{\:( c - p )\:}{1 \:}}\\\\\qquad \dashrightarrow \sf \bigg( \alpha \: \beta \: \bigg) \:=\:( c - p ) \\\\ \dashrightarrow \underline{\boxed{\purple{\pmb{\frak{ \:\alpha \: \beta \: \:=\:( c - p )\: }}}}}\:\:\bigstar\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Given that ,

  • (α+1) (β+1) =0

\qquad \dashrightarrow \sf \Big\{ \alpha + 1 \Big\} \: \Big\{ \beta + 1 \Big\} \: = \:0 \:\\\\

\qquad \dashrightarrow \sf \Big\{ \alpha + 1 \Big\} \: \Big\{ \beta + 1 \Big\} \: = \:0 \:\\\\

\qquad \dashrightarrow \sf \alpha \Big\{ \beta + 1 \Big\} \:+ 1  \Big\{ \beta + 1 \Big\} \: = \:0 \:\\\\

\qquad \dashrightarrow \sf \alpha\beta + \alpha  \:+  \beta + 1 \: = \:0 \:\\\\

\qquad \dashrightarrow \sf \Big\{ \alpha\beta \Big\} + \Big\{ \alpha  \:+  \beta \Big\} + 1 \: = \:0 \:\\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \dashrightarrow \sf \Big\{ \alpha\beta \Big\} + \Big\{ \alpha  \:+  \beta \Big\} + 1 \: = \:0 \:\\\\

\qquad \dashrightarrow \sf \Big\{ c - p  \Big\} + \Big\{ p \Big\} + 1 \: = \:0 \:\\\\

\qquad \dashrightarrow \sf  c - p   + p  + 1 \: = \:0 \:\\\\

\qquad \dashrightarrow \sf  c  + 1 \: = \:0 \:\\\\

\qquad \dashrightarrow \sf  c  \: = \:-1 \:\\\\

 \dashrightarrow \underline{\boxed{\purple{\pmb{\frak{ \:c \: \:=\:-1\: }}}}}\:\:\bigstar\\

\qquad \therefore \:\underline {\sf Hence,  \:The \:Value \:of \:c \: is \:\pmb{\bf - 1 \:}\:\:.}\\

Similar questions