Math, asked by gyanvi78, 6 months ago

if and b are(-2,-2)and(2,-4)respectively. find the coordinate of p such that Ap=7/3AB and p lies on the line segment AB​

Answers

Answered by Anonymous
5

Solution:-

\setlength{\unitlength}{2.5 cm}\begin{picture}(2,2)\thicklines\put(2,4){\line(2,0){3}}\put(3.5,4.1){\line(0,-1){0.2}}\put(1.8,3.8){\sf A(2,-2)}\put(3.5,3.7){\sf p}\put(4.8,3.8){\sf B (2,-4)}\put(2.7,4.1){\sf 3}\put(4,4.1){\sf 4}\end{picture}

:- Given co -ordinate is

=> A( - 2 , - 2 )  , B( 2 , - 4 )

:- Ratio are

 \sf \to \:AP =  \dfrac{3}{7}  AB

 \sf \to7AP = 3AB

 \sf \to \:7AP = 3(AP + BP)

 \sf \to \: 7AP = 3AP + 3BP

 \sf \to \: 7AP - 3AP = 3BP

 \sf \to \: 4AP = 3BP

 \to \sf \:  \dfrac{AP}{BP}  =  \dfrac{3}{4}

:- Given ratio is 3 : 4

:- Formula

 \sf \: x =  \dfrac{mx_{2} + nx _{1}}{m + n}  \: and \: \sf \: y=  \dfrac{my_{2} + ny _{1}}{m + n}  \:

So

 \sf \:  \to \: m = 3 \: ,n \:  = 4,x _{1} = - 2 ,x _{2} = - 2, y _{1} = 2, y _{2} =  - 4

 \sf \to \: x =  \dfrac{3 \times  - 2 + 4 \times  - 2}{3 + 4}  \:  \: and \:  \: y =  \dfrac{3 \times 2 + 4 \times  - 4}{3 + 4}

 \sf\to \: x =  \dfrac{ - 6 - 8}{7}  \:  \: and \:  \: y =  \dfrac{6 - 8}{7}

 \sf \:  \to \: x =  \dfrac{ - 14}{7}  \: and \: y =  \dfrac{ - 2}{7}

Similar questions