Math, asked by latafunde562, 7 months ago

If α and β be the zeros of the quadratic polynomial 3x² +5x -7 Evaluate : 1/α + 1/β

Answers

Answered by sonal1305
7

{\huge{\underline{\sf {\orange{Answer}}}}}

\: \:

 \frac{1 }{ \alpha }  +  \frac{1}{ \beta } =   \frac{5}{7}

\: \:

{\huge{\underline{\sf {\blue{Explanation :}}}}}

\: \:

The polynomial is 3 {x}^{2}  + 5x - 7

The zeroes of this polynomial are α and β.

\: \:

The given polynomial is of the form

a {x}^{2}  + bx + c

where, a = 3, b = 5, c = -7

 \:  \:

We know that,

Sum of zeroes =  \frac{ - b}{a}

 \alpha   + \beta  =  \frac{ - b}{a}

 \alpha +   \beta  =  \frac{ - 5}{3}

Product of zeroes =  \frac{c}{a}

 \alpha  \times  \beta  =  \frac{c}{a}

 \alpha \times   \beta  =  \frac{ - 7}{3}

\: \:

Now,

We need to find,

 \frac{1}{ \alpha }  +  \frac{1}{ \beta }

Taking LCM of α and β

 =  \frac{  \beta   \:  +   \:  \alpha }{ \alpha   \: \times  \:  \beta }

  = \frac{ \alpha   \:  +  \: \beta }{ \alpha    \: \times \:  \beta }

 =  \frac{ \frac{ - 5}{3} } { \frac{ - 7}{3} }

 =  \frac{ - 5}{3}   \times  \frac{3}{ - 7}

  = \frac{ - 5}{ - 7}

 =  \frac{5}{7}

Similar questions