Math, asked by rocktwosms3909, 1 month ago

. If α + β = θ ; α − β = ∅ and tan α = λ .tanβ . Prove sin θ = ( λ+1 λ−1 ) . sin∅ ?

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \alpha  +  \beta  =  \theta

and

\rm :\longmapsto\: \alpha   -   \beta  =  \phi

Also, given that

\rm :\longmapsto\:tan\alpha =  \lambda \: tan\beta

can be rewritten as

\rm :\longmapsto\:\dfrac{tan\alpha}{tan\beta}  = \dfrac{\lambda}{1}

Apply Componendo and Dividendo, we get

\rm :\longmapsto\:\dfrac{tan\alpha + tan\beta}{tan\alpha - tan\beta}  = \dfrac{\lambda + 1}{\lambda - 1}

\rm :\longmapsto\:\dfrac{\dfrac{sin\alpha}{cos\alpha}  + \dfrac{sin\beta}{cos\beta} }{\dfrac{sin\alpha}{cos\alpha}  - \dfrac{sin\beta}{cos\beta} }  = \dfrac{\lambda + 1}{\lambda - 1}

\rm :\longmapsto\:\dfrac{sin\alpha \: cos\beta \:  +  \: sin\beta \: cos\alpha}{sin\alpha \: cos\beta \:  -  \: sin\beta \: cos\alpha}  = \dfrac{\lambda + 1}{\lambda - 1}

\rm :\longmapsto\:\dfrac{sin(\alpha + \beta)}{sin(\alpha - \beta)}  = \dfrac{\lambda + 1}{\lambda - 1}

\rm :\longmapsto\:\dfrac{sin\theta}{sin\phi}  = \dfrac{\lambda + 1}{\lambda - 1}

\rm :\longmapsto\:sin\theta \:   = \:  \dfrac{\lambda + 1}{\lambda - 1} \:  sin\phi

Formula Used :-

\rm :\longmapsto\:sin(x + y) = sincosy + sinycosx

\rm :\longmapsto\:sin(x  -  y) = sincosy  -  sinycosx

Additional Information :-

\rm :\longmapsto\:cos(x + y) = cosxcosy - sinxsiny

\rm :\longmapsto\:cos(x  -  y) = cosxcosy  +  sinxsiny

\rm :\longmapsto\:tan(x + y) = \dfrac{tanx + tany}{1 - tanxtany}

\rm :\longmapsto\:tan(x  -  y) = \dfrac{tanx  -  tany}{1  +  tanxtany}

\rm :\longmapsto\:cot(x + y) = \dfrac{cotxcoty - 1}{cotx + coty}

Similar questions