Math, asked by StarGirl1m, 1 month ago

If angle θ = 30°, find the value of 4 cos³θ - 3cosθ​

Answers

Answered by Anonymous
39

\underline {\underline{\huge{\dag{\textsf{\textbf{\pink{Answer:}}}}}}} \\ \\         \large\sf\underline\bold{Given :} \\   \\ \sf\Theta = 30 \\ \\  \sf\huge\mathfrak\bigstar{Solution\implies} \\ \\ \implies  \:  4 \times {\cos(30)}^{3}   - 3 \times  \cos(30)  \\  \\  \implies \: 4  \: \times  \:  \frac{ \sqrt{3} }{2}  \:  -  \: 3 \times  \frac{ \sqrt{3} }{2}  \\  \\ \implies \: 2 \sqrt{3}  -   \frac{3 \sqrt{3} }{2} \\  \\  \implies \: \frac{4 \sqrt{3} - 3 \sqrt{3}  }{2}  \\  \\ \implies \:    \boxed{\frac{ \sqrt{3} }{2}  }

{\underline{\underline{\pmb\dag{\frak{\red{llCandyBlushll}}}}}}

Similar questions