if angle A = 45° prove that sin2A = 2sinAXcosA
Answers
Answered by
0
Step-by-step explanation:
Solution
verified
A=45
∘
then 2A=90
∘
sin2A=sin90
∘
RHS
2sinAcosB=2sin45
∘
cos45
∘
=2×
2
1
×
2
1
2sinAcosB=1
LHS:
sin90
∘
=1
L.H.S.=R.H.S.
Answered by
18
Correct Question:
If angle A = 45°. Prove that sin2A = 2sinA × cosA
Step-by-step explanation:
If angle A is 45°. We have to prove that sin2(45)° = 2sin(45)° × cos(45)°
LHS,
sin2(45)°
sin(90)°
From the table of trigonometric values,
sin(90)° = 1
LHS = 1
___________________
RHS,
2sin(45)° × cos(45)°
From the table of trigonometric values,
2 × (1/√2) × 1/√2
√2 × 1 × 1/√2
√2/√2
1
RHS = 1
LHS = RHS
Hence proved that, sin2A = 2sinA × cosA.
Similar questions