Math, asked by VONGOLADECIMO, 4 months ago

If angle A = 90° in rt ∆ABC, prove that sec² B - cot² C = 1

Answers

Answered by ravi2303kumar
1

Step-by-step explanation:

Given a right angled triangle, right angled at A

=> ∠B + ∠C = 90°

ie., ∠C =  90° - ∠B

consider, sec² B - cot² C

= sec² B - cot² (90° - B)

= sec² B - cot² (90° - B)

= sec² B - tan² B

= 1                               (as sec²θ - tan²θ =1)

=> sec² B - cot² C = 1

hence proved

Similar questions