Math, asked by DarknightrexYT, 2 months ago

If angle A is 50° , angle B is x°, angle C is unknown and the exterior angle as in the angle D is 115°, find the value of x​. I need step by step​

Attachments:

Answers

Answered by Anonymous
6

Answer :-

  • ∠B = 65° or x = 65°.

Given :-

  • Angle A is 50°
  • Angle B is x°
  • Angle C is unknown.
  • The exterior angle as in the angle D is 115°.

To find :-

  • Find the value of x.

Solution :-

∠ADB + 115° = 180°

∠ADB = 180° - 115°

∠ADB = 65°

We know that,

Sum of interior angles of a ∆ = 180°

65° + 50° + x° = 180°

115° + x° = 180°

x° = 180° - 115°

x° = 65°

Hence, B = 65° or x = 65°.

Therefore, Angles of the triangle are :-

  1. Angle A = 50°
  2. Angle B = 65°
  3. Angle C = 65°
  4. Angle D = 115°
Answered by Anonymous
7

AnswEr-:

\boxed {\mathrm{ \angle B \:or\: x \: = 65^{⁰} }}

Explanation-:

\sf{ Given-:}

  • Angle A = 50,

  • Angle B = x,

  • Angle C is unknown and

  • The exterior angle as in the angle D = 115°

\sf{ To\:Find-:}

  • The value of x .

\dag{\underline {\mathrm{Solution\:of\:Question\:-:}}}

As we know that ,

  • \longrightarrow {\sf{\angle ADB + \angle ACB = 180^{⁰}}}

  • \sf{ Here-:}

  • \sf{ \angle ADB = 115^{⁰}}

  • \sf{ \angle ACB = ??}

Now , By putting known Values-:

  • \longrightarrow {\sf{\angle ADB + \angle ACB = 180^{⁰}}}

  • \longrightarrow {\sf{\angle ACB  = 180^{⁰}}}

  • \longrightarrow {\sf{\angle ACB  = 180-115}}

  • \longrightarrow {\sf{\angle ACB  = 65^{⁰}}}

Therefore,

  • \longrightarrow {\sf{\angle ACB \:or \: \angle C \:  = 65^{⁰}}}________[1]

Now ,

As , We know That -:

  • \dag{\underline {\mathrm{Total \:Sum\:of\:interior \:angle \:of\:Triangle\:is\:180^{⁰}}}}

Or ,

  • \dag{\underline {\mathrm{\angle A + \angle B + \angle C = 180^{⁰}}}}

Here -:

  • Angle A = 50 ( Given that )

  • Angle B = x

  • Angle C = 65 ( From 1)

Now , By putting known Values in Formula of sum of angle of triangle-:

  • \longrightarrow {\mathrm{50^{⁰} + 65^{⁰} + x  = 180^{⁰}}}

  • \longrightarrow {\mathrm{ 115^{⁰} + x  = 180^{⁰}}}

  • \longrightarrow {\mathrm{ x = 180 - 115 }}

  • \longrightarrow {\mathrm{ x = 65^{⁰} }}

Then ,

  • Putting x = 65

  • Angle B = x = 65

Hence ,

  • \boxed {\mathrm{ \angle B \:or\: x \: = 65^{⁰} }}

________________________♡____________________________

Similar questions