Math, asked by Anonymous, 3 months ago

if angle abc , AB = AC and Angle A is 40 degree find X and Y .

not goögle copied​

Attachments:

Answers

Answered by sharmamanasvi007
11

Answer:

\Huge{\mathscr{\fcolorbox {blue}{pink}{\color {purple}{Answer}}}}

In ∆ABC,

If, \: \: \: \: \: \: \: \: AB = AC

then,  \: \: \: \: \: \: \: ∠ABC = ∠ACB

So, \: \: \: \: \: \: \: \: Let ∠ABC be x.

then,  \: \: \: \: \: \: \: \: ∠ABC = ∠ACB = x

 \\

40° + x° + x° = 180° [∵ angle sum property of a triangle]

40° + 2x° = 180°

2x° = 180° - 40°

2x° = 140°

x° =   (\frac{140}{2})°

x° = 70°

then,  \: \: \: \: \: \: \: \: ∠ABC = ∠ACB = 70°

 \\

180° - 70° = 110°

\df\green{\underline{\boxed{x°\: = \:y°\: =\: 110°}}}

☆☆☆_____________________________☆☆☆

\bold \star\red{\underline{\boxed{Hope \: it \: helps \: you}}}\star

\bold \star\orange{\underline{\boxed{Pls \: follow \: kar \: do}}}\star

☆☆☆_____________________________☆☆☆

Answered by Anonymous
23

Answer:

\fbox\red{since ∆ABC is isosceles with}

\\

\small\pink{AB\: =\: AC}

\small\pink{∆ACB\: =\: ∆ABC}

\\

\huge\blue{now}

\\

  • \tt\green{∆A\: + \: ∆ABC\:+\:∆ ACB} = 180°
  • 40° + ABC + ACB = 180°
  • 2ABC = 180° - 40°
  • 2ABC = 140°
  • ABC = 140/2 = 70°

\huge\blue{now}

  • ABC + = 180°
  • 70° + = 180°
  • = 180° - 70°
  • = 110°

\huge\blue{again}

  • ABC + = 180°
  • 70 + = 180°
  • = 180° - 70°
  • = 110°

hence. x = 110 , y = 110

Similar questions