Math, asked by jessica9829, 4 months ago

if angle ABC =anglePQR, angleA+angleB=100°, AB=3cm, BC=5cm, then find: coordinates of A (4, 0) then find the coordinates of B and the length of AB​

Answers

Answered by vansh776193
2

Answer:

Answer:

The length of AD=\frac{12}{5}=2.4 cmAD=

5

12

=2.4cm

Step-by-step explanation:

Given ΔABC, ∠A=90°, AB=3cm, BC=5cm

AD is perpendicular to BC.

We have to find the length of AD

In ΔADB and ΔCAB

∠ADB=∠BAC (each 90° given)

∠B=∠B (common)

By AA similarity rule, ΔADB~ΔCAB

Hence, corresponding sides are in proportion

\frac{DB}{AB}=\frac{AB}{CB}

AB

DB

=

CB

AB

⇒ \frac{DB}{3}=\frac{3}{5}

3

DB

=

5

3

⇒ DB=\frac{9}{5}DB=

5

9

By Pythagoras theorem in ΔADB

AB^2=AD^2+DB^2AB

2

=AD

2

+DB

2

⇒ 3^2=AD^2+(\frac{9}{5})^23

2

=AD

2

+(

5

9

)

2

⇒ AD^2=9-\frac{81}{25}=\frac{144}{25}AD

2

=9−

25

81

=

25

144

⇒ AD=\frac{12}{5}=2.4 cmAD=

5

12

=2.4cm

Similar questions