Math, asked by Anonymous, 18 days ago

If angle b and angle q are acute angles such that sin b = sin q . Then prove that angle b = angle q
Spamming in not allowed!!​

Answers

Answered by vanshikkumari97800
1

Answer:

Given that ∠B and ∠Q are acute angle and

sinB=sinQ__ (A)

From ΔACB and ΔPRQ

sinB=

AB

AC

__(1)

sinQ=

PQ

PR

___(2)

From equation (A)

sinB=sinQ

AB

AC

=

PQ

PR

let

AB

AC

=

PQ

PR

=k

PR

AC

=

PQ

AB

=k __(3)

Now,

AC=k×PR

AB=k×PQ

From ΔACB

By Pythagoras theorem

AB

2

=AC

2

+BC

2

(k×PR)

2

=(k×PQ)

2

+BC

2

⇒k

2

×PR

2

=k

2

×PQ

2

−BC

2

⇒BC

2

=k

2

×PR

2

−k

2

PQ

2

=k

2

[PR

2

−PQ

2

]

∴BC=

k

2

[PR

2

−PQ

2

]

From ΔPRQ

By Pythagoras theorem

PQ

2

=PR

2

+QR

2

⇒QR

2

=PQ

2

−PR

2

∴QR=

PQ

2

−PR

2

Consider that

QR

BC

=k __(4)

From equation (3) and (4) to,

PR

AC

=

PQ

AB

=

QR

BC

Hence, ΔACB∼ΔPRQ (sss similarity)

∠B=∠Q

Hence, this is the answer

Step-by-step explanation:

Mark as brealient

Attachments:
Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Let us consider two right angle triangles abc and pqr right angled at c and r respectively and b and q are acute angles such that

\rm \: sinb = sinq

\rm\implies \:\dfrac{ac}{ab}  = \dfrac{pr}{pq}

\rm\implies \:\dfrac{ac}{pr}  = \dfrac{ab}{pq} = k \: (say) -  -  - (1)

\rm\implies \:ac = k \: (pr) \:  \: and \:  \: ab = k \: (pq)

Now, In right triangle abc

\rm \:  {ab}^{2} =  {bc}^{2} +  {ac}^{2}

\rm \:  {bc}^{2} =  {ab}^{2}  -  {ac}^{2}

On substituting the values of ab and ac from above, we get

\rm \:  {bc}^{2} =  {(k \: pq)}^{2}  -  {(k \: pr)}^{2}

\rm \:  {bc}^{2} =  { {k}^{2}  \: pq}^{2}  -  { {k}^{2}  \: pr}^{2}

\rm \:  {bc}^{2} =  { {k}^{2} ( \: pq}^{2}  -   {\: pr}^{2} )

\rm \:  {bc}^{2} =   {k}^{2} \:  {qr}^{2}

\rm\implies \:bc \:  =  \: k \: qr

\rm\implies \:\dfrac{bc}{qr} = k -  -  -  - (2)

So, from equation (1) and (2), we get

\rm\implies \:\dfrac{ac}{pr}  = \dfrac{ab}{pq}  = \dfrac{bc}{qr}

\rm\implies \: \triangle \: acb \:  \sim \: \triangle \: prq \:  \:  \:  \: \:  \:  \:  \:   \{By \: SSS \}

9

\rm\implies \:b = q \:  \:  \: \:  \:  \:   \{By \: CPCT \}

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More To Know :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Attachments:
Similar questions